zbMATH — the first resource for mathematics

Deficiency distance between multinomial and multivariate normal experiments. (English) Zbl 1029.62005
Summary: The deficiency distance between a multinomial and a multivariate normal experiment is bounded under a condition that the parameters are bounded away from zero. This result can be used as a key step in establishing asymptotic normal approximations to nonparametric density estimation experiments. The bound relies on the recursive construction of explicit Markov kernels that can be used to reproduce one experiment from the other. The distance is then bounded using classic local-limit bounds between binomial and normal distributions. Some extensions to other appropriate normal experiments are also presented.

62B15 Theory of statistical experiments
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI Euclid
[1] BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022
[2] BROWN, L. D. and ZHANG, C.-H. (1998). Asy mptotic nonequivalence of nonparametric experiments when the smoothness index is 1/2. Ann. Statist. 26 279-287. · Zbl 0932.62061
[3] CARTER, A. V. (2001). Deficiency distance between multinomial and multivariate normal experiments under smoothness constraints on the parameter set. Technical Report, UCSB. Available at www.pstat.ucsb.edu/faculty/carter/research.html. URL: · Zbl 1029.62005
[4] FELLER, W. (1968). An Introduction to Probability Theory and Its Applications 1, 3rd ed. Wiley, New York. · Zbl 0155.23101
[5] GOLUBEV, G. K. and NUSSBAUM, M. (1998). Asy mptotic equivalence of spectral density and regression estimation. Technical Report 420, Weierstrass Institute, Berlin.
[6] GRAMA, I. and NUSSBAUM, M. (1998). Asy mptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 167-214. · Zbl 0953.62039
[7] JOHNSON, N. L. and KOTZ, S. (1969). Distributions in Statistics: Discrete Distributions. Houghton Mifflin, Boston. · Zbl 0292.62009
[8] KLEMELÄ, J. and NUSSBAUM, M. (1998). Constructive asy mptotic equivalence of density estimation and Gaussian white noise. Discussion paper 53, Sonderforschungsbereich 373, Humboldt Univ., Berlin.
[9] KULLBACK, S. (1967). A lower bound for discrimination in terms of variation. IEEE Trans. Inform. Theory 13 126-127.
[10] LE CAM, L. (1964). Sufficiency and approximate sufficiency. Ann. Math. Statist. 35 1419-1455. · Zbl 0129.11202
[11] LUCKHAUS, S. and SAUERMANN, W. (1989). Multinomial approximations for nonparametric experiments which minimize the maximal loss of Fisher information. Probab. Theory Related Fields 81 159-184. · Zbl 0663.62060
[12] MILSTEIN, G. and NUSSBAUM, M. (1998). Diffusion approximation for nonparametric autoregression. Probab. Theory Related Fields 112 535-543. · Zbl 1053.62556
[13] MÜLLER, D. W. (1979). Asy mptotically multinomial experiments and the extension of a theorem of Wald. Z. Wahrsch. Verw. Gebiete 50 179-204. · Zbl 0402.60005
[14] NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035
[15] PROHOROV, YU. V. (1961). Asy mptotic behavior of the binomial distribution. Select. Transl. Math.
[16] Statist. Probab. 1 87-96. Amer. Math. Soc., Providence, RI [(1953). Uspekhi. Mat. Nauk. 8 135-142 (in Russian)].
[17] TORGERSEN, E. (1991). Comparison of Statistical Experiments. Cambridge Univ. Press. · Zbl 0732.62009
[18] SANTA BARBARA, CALIFORNIA 93106 E-MAIL: carter@pstat.ucsb.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.