zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Laplace approximations for hypergeometric functions with matrix argument. (English) Zbl 1029.62047
Summary: We present Laplace approximations for two functions of matrix arguments: the Type I confluent hypergeometric function and the Gauss hypergeometric function. Both of these functions play an important role in distribution theory in multivariate analysis, but from a practical point of view they have proved challenging, and they have acquired a reputation for being difficult to approximate. Appealing features of the approximations we present are: (i) they are fully explicit (and simple to evaluate in practice); and (ii) typically, they have excellent numerical accuracy. The excellent numerical accuracy is demonstrated in the calculation of non-central moments of Wilks’ $\Lambda$ and the likelihood ratio statistic for testing block independence, and in the calculation of the CDF of the non-central distribution of Wilks’ $\Lambda$ via a sequential saddle-point approximation. Relative error properties of these approximations are also studied, and it is noted that the approximations have uniformly bounded relative errors in important cases.

MSC:
62H10Multivariate distributions of statistics
33C99Hypergeometric functions
33C15Confluent hypergeometric functions, Whittaker functions, ${}_1F_1$
62E17Approximations to statistical distributions (nonasymptotic)
WorldCat.org
Full Text: DOI Euclid
References:
[1] ABRAMOWITZ, M. and STEGUN, I. A. (1972). Handbook of Mathematical Functions, 9th ed. Dover, New York. · Zbl 0543.33001
[2] BAGCHI, P. and KADANE, J. B. (1991). Laplace approximations to posterior moments and marginal distributions on circles, spheres, and cy linders. Canad. J. Statist. 19 67-77. JSTOR: · Zbl 0719.62026 · doi:10.2307/3315537 · http://links.jstor.org/sici?sici=0319-5724%28199103%2919%3A1%3C67%3ALATPMA%3E2.0.CO%3B2-%23&origin=euclid
[3] BARNDORFF-NIELSEN, O. E. and WOOD, A. T. A. (1998). On large deviations and choice of ancillary for p and r. Bernoulli 4 35-63. · Zbl 0894.62026 · doi:10.2307/3318531
[4] BINGHAM, C., CHANG, T. and RICHARDS, D. (1992). Approximating the matrix Fisher and Bingham distributions: applications to spherical regression and Procrustes analysis. J. Multivariate Anal. 41 314-337. · Zbl 0746.62056 · doi:10.1016/0047-259X(92)90072-N
[5] BLEISTEIN, N. and HANDELSMAN, R. A. (1975). Asy mptotic Expansions of Integrals. Dover, New York.
[6] BOOTH, J. G., BUTLER, R. W., HUZURBAZAR, S. and WOOD, A. T. A. (1995). Saddlepoint approximations for p-values of some tests of covariance matrices. J. Statist. Comput. Simulation 53 165-180. · Zbl 0879.62047 · doi:10.1080/00949659508811704
[7] BUTLER, R. W., HUZURBAZAR, S. and BOOTH, J. G. (1992). Saddlepoint approximations for the Bartlett-Nanda-Pillai trace statistic in multivariate analysis. Biometrika 79 705-715. JSTOR: · Zbl 0764.62045 · doi:10.1093/biomet/79.4.705 · http://links.jstor.org/sici?sici=0006-3444%28199212%2979%3A4%3C705%3ASAFTBT%3E2.0.CO%3B2-Z&origin=euclid
[8] BUTLER, R. W. and WOOD, A. T. A. (2000). Laplace approximations for hy pergeometric functions of matrix argument. Technical Report 00-05, Div. Statistics, Univ. Nottingham. Available at www.maths.nottingham.ac.uk/statsdiv/research/reports.html. URL: · http://www.maths.nottingham.ac.uk/statsdiv/research/reports.html.
[9] CHIKUSE, Y. (1998). Density estimation on the Stiefel manifold. J. Multivariate Anal. 66 188-206. · Zbl 1130.62322 · doi:10.1006/jmva.1998.1747
[10] CONSTANTINE, A. G. (1963). Some noncentral distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270-1285. · Zbl 0123.36801 · doi:10.1214/aoms/1177703863
[11] CONSTANTINE, A. G. and MUIRHEAD, R. J. (1976). Asy mptotic expansions for distributions of latent roots in multivariate analysis. J. Multivariate Anal. 6 369-391. · Zbl 0345.62038 · doi:10.1016/0047-259X(76)90046-4
[12] EFSTATHIOU, M., GUTIÉRREZ-PEÑA, E. and SMITH, A. F. M. (1998). Laplace approximations for natural exponential families with cuts. Scand. J. Statist. 25 77-92. · Zbl 0908.62011 · doi:10.1111/1467-9469.00090
[13] FISHER, R. A. (1990). Statistical Methods, Experimental Design, and Scientific Inference. Oxford Univ. Press. · Zbl 0712.01007
[14] FRASER, D. A. S., REID, N. and WONG, A. (1991). Exponential linear models: a two-pass procedure for saddlepoint approximation. J. Roy. Statist. Soc. Ser. B 53 483-492. JSTOR: · Zbl 0800.62400 · http://links.jstor.org/sici?sici=0035-9246%281991%2953%3A2%3C483%3AELMATP%3E2.0.CO%3B2-A&origin=euclid
[15] GLy NN, W. J. and MUIRHEAD, R. J. (1978). Inference in canonical correlation analysis. J. Multivariate Anal. 8 468-478. · Zbl 0387.62042 · doi:10.1016/0047-259X(78)90067-2
[16] GUPTA, R. D. and RICHARDS, D. ST. P. (1985). Hy pergeometric functions of scalar matrix argument are expressible in terms of classical hy pergeometric functions. SIAM J. Math. Anal. 16 852-858. · Zbl 0615.33002 · doi:10.1137/0516064
[17] HERZ, C. S. (1955). Bessel functions of matrix argument. Ann. Math. 61 474-523. JSTOR: · Zbl 0066.32002 · doi:10.2307/1969810 · http://links.jstor.org/sici?sici=0003-486X%28195505%292%3A61%3A3%3C474%3ABFOMA%3E2.0.CO%3B2-2&origin=euclid
[18] JAMES, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475-501. · Zbl 0121.36605 · doi:10.1214/aoms/1177703550
[19] JENSEN, J. L. (1995). Saddlepoint Approximations. Oxford Univ. Press. · Zbl 1274.62008
[20] JOHNSON, N. L. and KOTZ, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York. · Zbl 0248.62021
[21] LUGANNANI, R. and RICE, S. O. (1980). Saddlepoint approximations for the distribution of the sum of independent random variables. Adv. Appl. Probab. 12 475-490. JSTOR: · Zbl 0425.60042 · doi:10.2307/1426607 · http://links.jstor.org/sici?sici=0001-8678%28198006%2912%3A2%3C475%3ASPAFTD%3E2.0.CO%3B2-K&origin=euclid
[22] MAGNUS, J. R. and NEUDECKER, H. (1988). Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York. · Zbl 0651.15001
[23] MATHAI, A. M. (1993). A Handbook of Generalized Special Functions for Statistical and physical Sciences. Clarendon Press, Oxford. · Zbl 0770.33001
[24] MUIRHEAD, R. J. (1975). Expressions for some hy pergeometric functions of matrix argument with applications. J. Multivariate Anal. 5 283-293. · Zbl 0312.62042 · doi:10.1016/0047-259X(75)90046-9
[25] MUIRHEAD, R. J. (1978). Latent roots and matrix variates: a review of some asy mptotic results. Ann. Statist. 6 5-33. · Zbl 0375.62050 · doi:10.1214/aos/1176344063
[26] MUIRHEAD, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York. · Zbl 0556.62028
[27] OLVER, F. W. J. (1991). Uniform, exponentially improved, asy mptotic expansions for the confluent hy pergeometric function and other integral transforms. SIAM J. Math. Anal. 22 1475- 1489. · Zbl 0738.41030 · doi:10.1137/0522095
[28] OLVER, F. W. J. (1993). Exponentially-improved asy mptotic solutions of ordinary differential equations. I. The confluent hy pergeometric function. SIAM J. Math. Anal. 24 756-767. · Zbl 0779.34048 · doi:10.1137/0524046
[29] PARIS, R. B. (1992). Smoothing of the Stokes phenomenon using Mellin-Barnes integrals. Asy mptotic methods in analysis and combinatorics. J. Comput. Appl. Math. 41 117-133. · Zbl 0772.33015 · doi:10.1016/0377-0427(92)90242-P
[30] PHILLIPS, P. C. B. (1983). Exact small sample theory in the simultaneous equations model. In Handbook of Econometrics 1 (Z. Griliches, and M. D. Intriligator, eds.) Chapter 8. North-Holland, Amsterdam. · Zbl 0549.62075
[31] ROY, S. N. (1939). p-statistics, or some generalizations in analysis of variance appropriate to multivariate problems. Sankhy?a 4 381-396.
[32] SRIVASTAVA, M. S. and CARTER, E. M. (1980). Asy mptotic expansions for hy pergeometric functions. In Multivariate Analy sis V (P. Krishnaiah, ed.) 337-347. North-Holland, Amsterdam. · Zbl 0434.62019
[33] SUGIURA, N. (1969). Asy mptotic non-null distributions of the likelihood ratio criteria for covariance matrix under local alternatives. Mimeo Ser. 609, Inst. Statistics, Univ. North Carolina, Chapel Hill.
[34] SUGIURA, N. (1973). Further asy mptotic formulas for the non-null distributions of three statistics for multivariate linear hy pothesis. Ann. Inst. Statist. Math. 25 153-163. · Zbl 0338.62027 · doi:10.1007/BF02479366
[35] SUGIURA, N. and FUJIKOSHI, Y. (1969). Asy mptotic expansions of the non-null distributions of the likelihood ratio criteria for multivariate linear hy pothesis and independence. Ann. Math. Statist. 40 942-952. · Zbl 0184.22303 · doi:10.1214/aoms/1177697599
[36] SUGIy AMA, T. (1967). On the distribution of the largest latent root of the covariance matrix. Ann. Math. Statist. 38 1148-1151. · Zbl 0161.38301 · doi:10.1214/aoms/1177698783
[37] FORT COLLINS, COLORADO 80523 E-MAIL: walrus@stat.colostate.edu SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF NOTTINGHAM NOTTINGHAM NG7 2RD UNITED KINGDOM E-MAIL: atw@maths.nott.ac.uk