×

The partitioning principle: a powerful tool in multiple decision theory. (English) Zbl 1029.62064

Summary: A first general principle and nowadays state of the art for the construction of powerful multiple test procedures controlling a multiple level \(\alpha\) is the so-called closure principle. We introduce another powerful tool for the construction of multiple decision procedures, especially for the construction of multiple test procedures and selection procedures. This tool is based on a partition of the parameter space and will be called partitioning principle (PP).
In the first part of the paper we review basic concepts of multiple hypotheses testing and discuss a slight generalization of the current theory. In the second part we present various variants of the PP for the construction of multiple test procedures, these are a general PP (GPP), a weak PP (WPP) and a strong PP (SPP). It will be shown that, depending on the underlying decision problem, a PP may lead to more powerful test procedures than a formal application of the closure principle (FCP). Moreover, the more complex SPP may be more powerful than the WPP. Based on a duality between testing and selecting, PPs can also be applied for the construction of more powerful selection procedures. In the third part of the paper FCP, WPP and SPP are applied and compared in some examples.

MSC:

62J15 Paired and multiple comparisons; multiple testing
62C99 Statistical decision theory
62F03 Parametric hypothesis testing
62F07 Statistical ranking and selection procedures

References:

[1] FINNER, H. (1994a). Testing multiple hy potheses: General theory, specific problems, and relationships to other multiple decision procedures. Habilitationsschrift, FB IV Mathematik, Univ. Trier.
[2] FINNER, H. (1994b). Two-sided tests and one-sided confidence bounds. Ann. Statist. 22 1502-1516. · Zbl 0818.62021 · doi:10.1214/aos/1176325639
[3] FINNER, H. (1999). Stepwise multiple test procedures and control of directional errors. Ann. Statist. 27 274-289. · Zbl 0978.62057 · doi:10.1214/aos/1018031111
[4] FINNER, H. and GIANI, G. (1994). Closed subset selection procedures for selecting good populations. J. Statist. Plann. Inference 38 179-199. · Zbl 0799.62025 · doi:10.1016/0378-3758(94)90034-5
[5] FINNER, H. and GIANI, G. (1996). Duality between multiple testing and selecting. J. Statist. Plann. Inference 54 201-227. · Zbl 0857.62020 · doi:10.1016/0378-3758(95)00168-9
[6] FINNER, H. and GIANI, G. (2001). Least favorable parameter configurations for a step-down subset selection procedure. Biom. J. 43 543-552. · Zbl 0999.62013 · doi:10.1002/1521-4036(200109)43:5<543::AID-BIMJ543>3.0.CO;2-R
[7] FISHER, R. A. (1935). The Design of Experiments. Oliver and Boy d, London.
[8] GABRIEL, K. R. (1969). Simultaneous test procedures-Some theory of multiple comparisons. Ann. Math. Statist. 40 224-250. · Zbl 0198.23602 · doi:10.1214/aoms/1177697819
[9] HARTLEY, H. O. (1955). Some recent developments in analysis of variance. Comm. Pure Appl. Math. 8 47-72. · Zbl 0064.13607 · doi:10.1002/cpa.3160080104
[10] HAy TER, A. J. and HSU, J. C. (1994). On the relationship between stepwise decision procedures and confidence sets. J. Amer. Statist. Assoc. 89 128-136. · Zbl 0800.62182 · doi:10.2307/2291208
[11] HAy TER, A. J., MIWA, T. and LIU, W. (2000). Combining the advantages of one-sided and two-sided procedures for comparing several treatments with a control. J. Statist. Plann. Inference 86 81-99. · Zbl 0953.62068 · doi:10.1016/S0378-3758(99)00161-5
[12] HOCHBERG, Y. and TAMHANE, A. C. (1987). Multiple Comparison Procedures. Wiley, New York. · Zbl 0731.62125
[13] HODGES, J. L., Jr. and LEHMANN, E. L. (1954). Testing the approximate validity of statistical hy potheses. J. Roy. Statist. Soc. Ser. B 16 261-268. JSTOR: · Zbl 0057.35403
[14] HSU, J. C. (1992). Stepwise multiple comparisons with the best. J. Statist. Plann. Inference 33 197- 204. · Zbl 0781.62113 · doi:10.1016/0378-3758(92)90067-3
[15] HSU, J. C. (1996). Multiple Comparisons: Theory and Methods. Chapman and Hall, London. · Zbl 0898.62090
[16] HSU, J. C. and BERGER, R. L. (1999). Stepwise confidence intervals without multiplicity adjustment for dose-response and toxicity studies. J. Amer. Statist. Assoc. 94 468-482.
[17] KEULS, M. (1952). The use of the ”Studentized range” in connection with an analysis of variance. Euphy tica 1 112-122.
[18] LEHMANN, E. L. (1957a). A theory of some multiple decision problems, I. Ann. Math. Statist. 28 1-25. · Zbl 0078.33402 · doi:10.1214/aoms/1177707034
[19] LEHMANN, E. L. (1957b). A theory of some multiple decision problems, II. Ann. Math. Statist. 28 547-572. · Zbl 0080.35704 · doi:10.1214/aoms/1177706873
[20] MARCUS, R., PERITZ, E. and GABRIEL, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63 655-660. JSTOR: · Zbl 0353.62037 · doi:10.1093/biomet/63.3.655
[21] MILLER, R. G., JR. (1966). Simultaneous Statistical Inference. McGraw-Hill, New York.
[22] MILLER, R. G., JR. (1981). Simultaneous Statistical Inference, 2nd ed. Springer, New York.
[23] MIWA, T. and HAy TER, A. J. (1999). Combining the advantages of one-sided and two-sided test procedures for comparing several treatment effects. J. Amer. Statist. Assoc. 94 302-307. JSTOR: · Zbl 1072.62664 · doi:10.2307/2669704
[24] NAIK, U. D. (1975). Some selection rules for comparing p processes with a standard. Comm. Statist. 4 519-535. · Zbl 0308.62017 · doi:10.1080/03610927508827267
[25] NAIK, U. D. (1977). Some subset selection problems. Comm. Statist. Theory Methods A6 955-966. · Zbl 0372.62020 · doi:10.1080/03610927708827544
[26] NEWMAN, D. (1939). The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31 20-30. JSTOR: · Zbl 0022.25004 · doi:10.1093/biomet/31.1-2.20
[27] SHAFFER, J. P. (1980). Control of directional errors with stagewise multiple test procedures. Ann. Statist. 8 1342-1347. · Zbl 0484.62089 · doi:10.1214/aos/1176345205
[28] SONNEMANN, E. (1982). Allgemeine Lösungen multipler Testprobleme. EDV in Medizin und Biologie 13 120-128. · Zbl 0506.62058 · doi:10.1080/02331888208801652
[29] SONNEMANN, E. and FINNER, H. (1988). Vollständigkeitssätze für multiple Testprobleme. In Multiple Hy pothesenprüfung (P. Bauer et al., eds.) 121-135. Springer, Berlin.
[30] STEFANSSON, G., KIM, W.-C. and HSU, J. C. (1988). On confidence sets in multiple comparisons. In Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.) 2 89-104. Academic Press, New York. · Zbl 0685.62034
[31] STREITBERG, B. and RÖHMEL, J. (1988). Diskussion: Einige strukturelle Aspekte bei multiplen Testproblemen. In Multiple Hy pothesenprüfung (P. Bauer et al., eds.) 136-143. Springer, Berlin.
[32] TUKEY, J. W. (1953). The problem of multiple comparisons. Mimeographed monograph.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.