zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. (English) Zbl 1029.62071
Summary: We consider a diffusion model of small variance type with positive drift density varying in a nonparametric set. We investigate Gaussian and Poisson approximations to this model in the sense of asymptotic equivalence of experiments. It is shown that observation of the diffusion process until its first hitting time of level one is a natural model for the purpose of inference on the drift density. The diffusion model can be discretized by the collection of level crossing times for a uniform grid of levels. The random time increments are asymptotically sufficient and obey a nonparametric regression model with independent data. This decoupling is then used to establish asymptotic equivalence to Gaussian signal-in-white-noise and Poisson intensity models on the unit interval, and also to an i.i.d. model when the diffusion drift function $f$ is a probability density. As an application, we find the exact asymptotic minimax constant for estimating the diffusion drift density with sup-norm loss.

62M05Markov processes: estimation
62G08Nonparametric regression
62G07Density estimation
62B15Theory of statistical experiments
Full Text: DOI Euclid
[1] BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[2] CHHIKARA, R. S. and FOLKS, J. L. (1989). The Inverse Gaussian Distribution. Dekker, New York. · Zbl 0701.62009
[3] DE LA PEÑA, V. and GINÉ, E. (1999). Decoupling: From Dependence to Independence. Springer, New York.
[4] DONOHO, D. (1994). Asy mptotic minimax risk for sup-norm loss: Solution via optimal recovery. Probab. Theory Related Fields 99 145-170. · Zbl 0802.62007 · doi:10.1007/BF01199020
[5] FREIDLIN, M. I. and WENTZELL, A. D. (1998). Random Perturbations of Dy namical Sy stems, 2nd ed. Springer, New York.
[6] GENON-CATALOT, V. (1990). Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21 99-116. · Zbl 0721.62082 · doi:10.1080/02331889008802231
[7] GENON-CATALOT, V. and LAREDO, C. (1987). Limit theorems for the first hitting times process of a diffusion and statistical applications. Scand. J. Statist. 14 143-160. · Zbl 0655.62088
[8] GRAMA, I. and NUSSBAUM, M. (1998). Asy mptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 167-214. · Zbl 0953.62039 · doi:10.1007/s004400050166
[9] JACOD, J. and SHIRy AEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
[10] KARATZAS, I. and SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York. · Zbl 0734.60060
[11] KARLIN, S. and TAy LOR, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, Orlando, FL. · Zbl 0469.60001
[12] KOROSTELEV, A. P. (1993). Exact asy mptotically minimax estimator for nonparametric regression in uniform norm. Theory Probab. Appl. 38 737-743.
[13] KOROSTELEV, A. P. and NUSSBAUM, M. (1999). The asy mptotic minimax constant for sup-norm loss in nonparametric density estimation. Bernoulli 5 1099-1118. · Zbl 0955.62037 · doi:10.2307/3318561
[14] KUSHNER, H. J. and DUPUIS, P. G. (1992). Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, New York. · Zbl 0754.65068
[15] KUTOy ANTS, YU. (1985). On nonparametric estimation of trend coefficients in a diffusion process. In Statistics and Control of Stochastic Processes (N. V. Kry lov, R. S. Liptser and A. A. Novikov, eds.) 230-250. Optimization Software, New York. · Zbl 0591.62075
[16] KUTOy ANTS, YU. (1994). Identification of Dy namical Sy stems with Small Noise. Kluwer, Dordrecht.
[17] KUTOy ANTS, YU. (1997). Efficiency of the empirical distribution for ergodic diffusion. Bernoulli 3 445-456. · Zbl 0910.62079 · doi:10.2307/3318459
[18] LAREDO, C. (1990). A sufficient condition for asy mptotic sufficiency of incomplete observations of a diffusion process. Ann. Statist. 18 1158-1171. · Zbl 0725.62073 · doi:10.1214/aos/1176347744
[19] LE CAM, L. (1986). Asy mptotic Methods in Statistical Decision Theory. Springer, New York. · Zbl 0605.62002
[20] LEONOV, S. L. (1997). On the solution of an optimal recovery problem and its applications in nonparametric regression. Math. Methods Statist. 6 476-490. · Zbl 0920.62052
[21] LEPSKII, O. and SPOKOINY, V. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512-2546. · Zbl 0894.62041 · doi:10.1214/aos/1030741083
[22] MILSTEIN, G. N. (1998). On the mean-square approximation of a diffusion process in a bounded domain. Stochastics Stochastics Rep. 64 211-233. · Zbl 1043.60518
[23] MILSTEIN, G. and NUSSBAUM, M. (1998). Diffusion approximation for nonparametric autoregression. Probab. Theory Related Fields 112 535-543. · Zbl 1053.62556 · doi:10.1007/s004400050199
[24] MILSTEIN, G. N. and TRETy AKOV, M. V. (1999). Simulation of a space-time bounded diffusion. Ann. Appl. Probab. 9 732-779. · Zbl 0964.60065 · doi:10.1214/aoap/1029962812
[25] MUSIELA, M. and RUTKOWSKI, M. (1997). Martingale Methods in Financial Modelling. Springer, New York. · Zbl 0906.60001
[26] NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035 · doi:10.1214/aos/1032181160
[27] PINSKER, M. S. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133. · Zbl 0452.94003
[28] REISS, R.-D. (1993). A Course on Point Processes. Springer, New York. · Zbl 0771.60037
[29] ITHACA, NEW YORK 14853-4201 E-MAIL: nussbaum@math.cornell.edu