zbMATH — the first resource for mathematics

The Lehmer constants of an annulus. (English) Zbl 1030.11057
The Lehmer constant \(L(V)\) of an open set \(V\) in the complex plane is defined [M. Langevin, C. R. Acad. Sci., Paris, Sér I. 301, 463-466 (1985; Zbl 0585.12013)] by \(L(V)=\inf M(\alpha)^{1/\deg(\alpha)}\), the infimum taken over all non-zero non-cyclotomic algebraic integers \(\alpha\) lying with all conjugates outside \(V\), and \(M(\alpha)\) denotes the Mahler measure of \(\alpha\). The authors compute \(L(V)\) in the case when \(V\) is an annulus centered at the origin and prove that for any open set \(V\) the inequality \(L(V)>1\) implies that \(V\) has a non-empty intersection with the unit circle (the converse implication has been earlier established by Langevin (loc.cit.)) Moreover they consider a variant of Lehmer’s constant, namely \(L_\infty(V)=\lim_{d\to\infty}\inf M(\alpha)^{1/\deg(\alpha)}\), the infimum being taken over all \(\alpha\) of degree \(\geq d\) lying with their conjugates outside \(V\), and obtain similar results.

11R04 Algebraic numbers; rings of algebraic integers
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11R09 Polynomials (irreducibility, etc.)
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
Full Text: DOI EMIS Numdam EuDML
[1] Beukers, F., Smyth, C.J., Cyclotomic points on curves. Number Theory for the Millennium: Proc. Millennial Conf. Number Theory (B. C. Berndt et al., eds.), Urbana, Illinois, May 21 - 26, 2000, A K Peters, Ltd., Natick, MA (to appear 2002). · Zbl 1029.11009
[2] Dubickas, A., On the distribution of roots of polynomials in sectors. I. Liet. Matem. Rink.38 (1998), 34-58. · Zbl 0920.12001
[3] Dubickas, A., Smyth, C.J., On the Remak height, the Mahler measure, and conjugate sets of algebraic numbers lying on two circles. Proc. Edinburgh Math. Soc.44 (2001), 1-17. · Zbl 0997.11087
[4] Langevin, M., Méthode de Fekete - Szegö et problème de Lehmer. C. R. Acad. Sci. Paris Sér. I Math.301 (1985), 463-466. · Zbl 0585.12013
[5] Langevin, M., Minorations de la maison et de la mesure de Mahler de certains entiers algébriques. C. R. Acad. Sci. Paris Sèr. I Math.303 (1986), 523-526. · Zbl 0604.12001
[6] Langevin, M., Calculs explicites de constantes de Lehmer. Groupe de travail en théorie analytique et élémentaire des nombres, 1986-1987, 52-68, Publ. Math. Orsay, 88-01, Univ. Paris XI, Orsay, 1988. · Zbl 0678.12002
[7] Lehmer, D.H., Factorisation of certain cyclotomic functions. Ann. of Math. (2) 34 (1933), 461-479. · JFM 59.0933.03
[8] Lehmer, D.H., Review of [La3]. Math. Rev.89j:11025.
[9] Mignotte, M., Sur un théorème de M. Langevin. Acta Arith.54 (1989), 81-86. · Zbl 0641.12003
[10] Rhin, G., Smyth, C.J., On the absolute Mahler measure of polynomials having all zeros in a sector. Math. Comp.65 (1995), 295-304. · Zbl 0820.11064
[11] Schinzel, A., On the product of the conjugates outside the unit circle of an algebraic number. Acta Arith.24 (1973), 385-399; Addendum 26 (1975), 329-331. · Zbl 0312.12001
[12] Smyth, C.J., On the measure of totally real algebraic integers. J. Austral. Math. Soc. Ser. A30 (1980), 137-149. · Zbl 0457.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.