Meijer, P.; van der Vlugt, M. The evaluation of Gauss sums for characters of 2-power order. (English) Zbl 1030.11067 J. Number Theory 100, No. 2, 381-395 (2003). Let \(p\) be a prime number, \(N \geq 2\) a positive integer not divisible by \(p\), \(k= \text{ord}_{N}(p)\) the order of \(p\) in \(( \mathbb{Z}/N \mathbb{Z})^{*}\), and \( \chi\) a multiplicative character of order \(N\) of the finite field \(F_{p^{k}}\). For \(1 \leq r \leq N-1\) and \(1 \leq v \leq p-1\) the Gauss sum \(g( \chi^{r},v)\) related to \( \chi^{r}\) and \(v\) is defined by \[ G( \chi^{r},v)= \sum_{x \in F_{p^{r}}} \chi(x) \zeta_{p}^{v Tr(x)}, \] where \( \zeta_{p}= \exp(2 \pi i/p)\) and \(Tr\) is the trace map from \(F_{p^{k}}\) onto \(F_{p}\). In a number of cases the Gauss sums \(G( \chi^{r},v)\) were determined up to complex conjugation. The authors consider the special case \(N=2^{t}\) not investigated earlier. Since \(G( \chi^{r},v)= \overline{ \chi^{r}(v)}G( \chi^{r},1)\) it suffices to consider the sum \(G( \chi^{r})=G( \chi^{r},1)\). The arguments of the paper can be shortly described as follows. To evaluate \(G( \chi^{r})\) the authors study the tower of fields \[ \mathbb{Q} \subset \mathbb{Q}(i\sqrt{2}) \subset \mathbb{Q}( \zeta_{N}) \subset \mathbb{Q}( \zeta_{N}, \zeta_{p}), \] where \( \zeta_{N}= \exp(2 \pi i/N)\), and then apply Stickelberger’s theorem on prime decomposition of Gauss sums. Clearly, \(G( \chi^{r}) \in \mathbb{Q}( \zeta_{N}, \zeta_{p})\). In the cyclotomic field \( \mathbb{Q}( \zeta_{N})\) the principal ideal \((p)\) can be written as \( { \mathfrak {p}}_{1}{ \mathfrak{p}}_{2}\). Given a prime ideal \({ \mathfrak{p}}_{1}\) in the ring of integers \( \mathfrak{O}( \zeta_{N})\) of \( \mathbb{Q}( \zeta_{N})\) one can identify \( \mathfrak{O}( \zeta_{N})/{ \mathfrak{p}}_{1}\) with \(F_{p^{k}}\), where \(k= \text{ord}_{N}(p)= \phi(N)/2=2^{t-1}\). If \(p \equiv 3 \pmod 8\) and \(N=2^{t}\) with \(t \geq 3\), firstly the authors prove that \(G( \chi)/i \sqrt{p} \in \mathbb{Q}(i \sqrt{2})\). Then they show that up to sign \[ G( \chi)=i \sqrt{p} \cdot p^{2^{t-3}-1}(a+ib \sqrt{2}), \] where \(a,b \in \mathbb{Z}\) are determined from \((a+ib \sqrt{2})= { \mathfrak{p}}_{1} \cap \mathfrak{O}(i \sqrt{2})\). The ambiguity of sign can be resolved by Stickelberger’s congruence. Making use of similar arguments, the authors evaluate \(G( \chi^{2^{s}})\) separately for \(p \equiv 3\pmod 8\), \(0 \leq s \leq t-1\) and for \(p \equiv 5 \pmod 8\), \(0 \leq s \leq t-1\). Reviewer: Serguei Stepanov (Ankara) Cited in 9 Documents MSC: 11T24 Other character sums and Gauss sums 11L05 Gauss and Kloosterman sums; generalizations Keywords:finite fields; Gauss sums PDF BibTeX XML Cite \textit{P. Meijer} and \textit{M. van der Vlugt}, J. Number Theory 100, No. 2, 381--395 (2003; Zbl 1030.11067) Full Text: DOI References: [1] L.D. Baumert, J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, JPL Tech. Rep. 32-1526 (1973) 128-131. [2] Berndt, B.C.; Evans, R.J.; Williams, K.S., Gauss and Jacobi sums, (1998), Wiley New York · Zbl 0906.11001 [3] Davenport, H.; Hasse, H., Die nullstellen der kongruenzzetafunktion in gewissen zyklischen Fällen, J. reine angew. math., 172, 151-182, (1935) · JFM 60.0913.01 [4] Langevin, P., Calculs de certaines sommes de Gauss, J. number theory, 63, 59-64, (1997) · Zbl 0899.11059 [5] Mbodj, O., Quadratic Gauss sums, Finite fields appl., 4, 347-361, (1998) · Zbl 0935.11044 [6] McEliece, R.J., Irreducible cyclic codes and Gauss sums, (), 185-202 · Zbl 0309.94022 [7] van der Vlugt, M., Hasse – davenport curves, Gauss sums and weight distributions of irreducible cyclic codes, J. number theory, 55, 145-159, (1995) · Zbl 0840.94021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.