zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new method for solving singular initial value problems in the second-order ordinary differential equations. (English) Zbl 1030.34004
Summary: Singular initial value problems, linear and nonlinear, homogeneous and nonhomogeneous, are investigated by using the Adomian decomposition method. The solutions are constructed in the form of a convergent series. A new general formula is established. The approach is illustrated with few examples.

34A12Initial value problems for ODE, existence, uniqueness, etc. of solutions
34A45Theoretical approximation of solutions of ODE
Full Text: DOI
[1] Chandrasekhar, S.: Introduction to the study of stellar structure. (1967) · Zbl 0149.24301
[2] Davis, H. T.: Introduction to nonlinear differential and integral equations. (1962) · Zbl 0106.28904
[3] O.U. Richardson, The Emission of Electricity from Hot Bodies, London, 1921 · Zbl 48.0118.05
[4] Shawagfeh, N. T.: Nonperturbative approximate solution for Lane--Emden equation. J. math. Phys. 34, No. 9, 4364 (1993) · Zbl 0780.34007
[5] Adomian, G.: Nonlinear stochastic operator equations. (1986) · Zbl 0609.60072
[6] Wazwaz, A. M.: A new algorithm for solving differential equations of Lane--Emden type. Appl. math. Comput. 111, 53 (2000)
[7] Russell, R. D.; Shampine, L. F.: Numerical methods for singular boundary value problems. SIAM J. Numer. anal. 12, 13 (1975) · Zbl 0271.65051
[8] Chawla, M. M.; Katti, C. P.: A finite-difference method for a class of singular boundary-value problem. IMA J. Numer. anal. 4, 457 (1984) · Zbl 0571.65076
[9] Chawla, M. M.; Mckee, S.; Shaw, G.: Order h2 method for a singular two point boundary value problem. Bit 26, 318 (1986) · Zbl 0602.65063
[10] Iyengar, S. R. K.; Jain, P.: Spline difference methods for singular two-point boundary-value problems. Numer. math. 500, 363 (1987) · Zbl 0642.65062
[11] Jain, R. K.; Jain, P.: Finite difference for a class of singular two-point boundary-value problems. Int. J. Comput. math. 27, 113 (1989) · Zbl 0679.34011
[12] El-Sayed, S. M.: Multi-integral methods for nonlinear boundary-value problems, A fourth order method for a singular two point boundary value problem. Int. J. Comput. math. 71, 259 (1999) · Zbl 0934.65081
[13] Adomian, G.: A review of the decomposition method and some recent results for nonlinear equation. Math. comput. Modelling 13, No. 7, 17 (1992)
[14] Adomian, G.: Solving frontier problems of physics: the decomposition method. (1994) · Zbl 0802.65122
[15] Adomian, G.; Rach, R.: Noise terms in decomposition series solution. Comput. math. Appl. 24, No. 11, 61 (1992) · Zbl 0777.35018
[16] Adomian, G.; Rach, R.; Shawagfeh, N. T.: On the analytic solution of Lane--Emden equation. Found. phys. Lett. 8, No. 2, 161 (1995)
[17] Adomian, G.: Differential coefficients with singular coefficients. Appl. math. Comput. 47, 179 (1992) · Zbl 0748.65066
[18] Wazwaz, A. M.: A first course in integral equations. (1997) · Zbl 0924.45001
[19] Wazwaz, A. M.: A reliable modification of Adomian’s decomposition method. Appl. math. Comput. 102, 77 (1999) · Zbl 0928.65083
[20] Wazwaz, A. M.: Analytical approximations and Padé approximants for Volterra’s population model. Appl. math. Comput. 100, 13 (1999) · Zbl 0953.92026
[21] Wazwaz, A. M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. math. Comput. 111, No. 1, 33 (2000) · Zbl 1023.65108
[22] Wazwaz, A. M.: Necessary conditions for the appearance of noise terms in decomposition solution series. Appl. math. Comput. 81, 199 (1997) · Zbl 0882.65132
[23] Cherruault, Y.: Convergence of Adomian’s method. Math. comput. Modelling 14, 83 (1990) · Zbl 0728.65056
[24] Cherruault, Y.; Saccomandi, G.; Some, B.: New results for convergence of Adomian’s method applied to integral equations. Math. comput. Modelling 16, No. 2, 85 (1992) · Zbl 0756.65083