×

zbMATH — the first resource for mathematics

A Palais-Smale approach to Sobolev subcritical operators. (English) Zbl 1030.35032
The domain \(\Omega\subset\mathbb R^N\) is an achieved one if there is \(u_0\in H^1_0(\Omega)\) such that \[ \|u_0\|_{L^p(\Omega)}/\|u_0\|_{H^1(\Omega)} = \sup \{\|u\|_{L^p(\Omega)}/\|u\|_{H^1(\Omega)}\mid u\in H^1_0(\Omega)\setminus\{0\}\}. \] The authors describe the achieved and some nonachieved domains for subcritical \(p\). See also the previous paper by H. C. Wang [Trans. Am. Math. Soc. 352, 4237-4256 (2000; Zbl 0951.35043)].

MSC:
35J20 Variational methods for second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI