×

Integral mappings between Banach spaces. (English) Zbl 1030.47503

The author studies integral mappings between Banach spaces. He considers some classes of “Grothendieck-integral” (G-integral) and “Pietsch-integral” (P-integral) multilinear operators. It is shown that a multilinear operator between Banach spaces is G- or P-integral if and only if its linearization is of the same kind on the injective product of the spaces.

MSC:

47G10 Integral operators
Full Text: DOI

References:

[1] Alencar, R., Multilinear mappings of nuclear and integral type, Proc. Amer. Math. Soc., 94, 33-38 (1985) · Zbl 0537.47011
[2] Alencar, R., On reflexivity and basis for \(P(^mE)\), Proc. Roy. Irish Acad., 85A, 131-138 (1985) · Zbl 0594.46043
[3] F. Bombal, Medidas vectoriales y espacios de funciones continuas, Publicaciones del Departamento de Análisis Matemático, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984; F. Bombal, Medidas vectoriales y espacios de funciones continuas, Publicaciones del Departamento de Análisis Matemático, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984
[4] F. Bombal, I. Villanueva, Integral operators on \(CK\); F. Bombal, I. Villanueva, Integral operators on \(CK\) · Zbl 1037.46046
[5] Defant, A.; Floret, K., Tensor Norms and Operator Ideals. Tensor Norms and Operator Ideals, North-Holland Math. Studies, 176 (1993) · Zbl 0774.46018
[6] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely Summing Operators. Absolutely Summing Operators, Cambridge Stud. Adv. Math., 43 (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0855.47016
[7] Diestel, J.; Uhl, J. J., Vector Measures. Vector Measures, Mathematical Surveys, 15 (1977), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0369.46039
[8] Figiel, T.; Johnson, W. B., The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc., 41, 197-200 (1973) · Zbl 0289.46015
[9] Grothendieck, A., Produits tensoriels topologiques et espaces nucláires, Mem. Amer. Math. Soc., 16 (1955) · Zbl 0064.35501
[10] Lacey, H. E., The Isometric Theory of Classical Banach Spaces (1974), Springer: Springer Berlin · Zbl 0285.46024
[11] Montgomery-Smith, S. J.; Saab, P., \(p\)-Summing operators on injective tensor products of spaces, Proc. Roy. Soc. Edinburgh Sect. A, 120, 283-296 (1992) · Zbl 0793.47017
[12] Stegall, C. P.; Retherford, J. R., Fully nuclear and completely nuclear operators with applications to \(L1\)- and \(L∞\)-spaces, Trans. Amer. Math. Soc., 163, 457-492 (1972) · Zbl 0225.47012
[13] Ruess, W. M.; Stegall, C. P., Extreme points in duals of operator spaces, Math. Ann., 261, 535-546 (1982) · Zbl 0501.47015
[14] Saab, P., Integral operators on spaces of continuous vector-valued measures, Proc. Amer. Math. Soc., 111, 1003-1013 (1991) · Zbl 0744.46016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.