zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vector-valued variational principles. (English) Zbl 1030.49003
In this paper the authors introduce a new notion of lower semi-continuity called order lower semi-continuity, and study its relationship with other lower semi-continuity concepts. The main result of the paper is a Deville-Godefroy-Zizler type variational principle for order lower semi-continuous vector-valued functions.

49J40Variational methods including variational inequalities
90C29Multi-objective programming; goal programming
49J53Set-valued and variational analysis
49J45Optimal control problems involving semicontinuity and convergence; relaxation
Full Text: DOI
[1] M.M. Abedessalam, On Banach spaces containing \ell1 and linear Kelley spaces, Dissertation, Faculty of the Graduate School University of Missouri-Columbia, 1986.
[2] M. Bachir, Dualité, calcul sous-différentiel et intégration en analyse non-lisse et non convexe, Thèse de doctorat, Université de Bordeaux I, 2000.
[3] Beauzamy, B.: Introduction to Banach spaces and their geometry. Mathematics studies 68 (1985) · Zbl 0585.46009
[4] Bishop, E.; Phelps, R. R.: A proof that every Banach space is subreflexive. Bull. amer. Math. soc. 67, 97-98 (1961) · Zbl 0098.07905
[5] Borwein, J.; Penot, J.; Théra, M.: Conjugate convex operators. J. math. Anal. appl. 102, 399-414 (1984) · Zbl 0588.46027
[6] Borwein, J.; Preiss, D.: Smooth variational principle with applications to subdifferentiability of convex functions. Trans. amer. Math. soc. 303, 517-527 (1987) · Zbl 0632.49008
[7] H. Brezis, Analyse fonctionnelle--Théorie et applications, Masson, Paris, New York, Barcelone, Milan, Mexico, Sao Paolo, 1983.
[8] R. Deville, Smooth variational principles and non-smooth analysis in Banach Spaces, Nonlinear Anal. Differential Equations Control (1999) 369--405. · Zbl 0952.49016
[9] Deville, R.; Finet, C.: Vector-valued perturbed minimization principles. Can. math. Soc. 27, 45-51 (2000) · Zbl 0968.46016
[10] R. Deville, N. Ghoussoub, Perturbed minimization principles and applications, Preprint number PIMS-99-4, Pacific Institute for the Mathematical Sciences http://www.pims.math.ca.
[11] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow, UK, 1993. · Zbl 0782.46019
[12] Ekeland, I.: On the variational principle. J. math. Anal. appl. 47, 324-353 (1974) · Zbl 0286.49015
[13] Ekeland, I.: Nonconvex minimization problems. Bull. amer. Math. soc. 1, 443-474 (1979) · Zbl 0441.49011
[14] C. Finet, Variational principles in partially ordered Banach spaces, J. Nonlinear Convex Anal. 2 (2001) to appear. · Zbl 1012.46017
[15] A. Göpfert, Chr. Tammer, A new maximal point theorem, Z. Anal. Anwendungen, 1994.
[16] Göpfert, A.; Tammer, Chr.; Za\check{}linescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear anal. 39, 909-922 (2000) · Zbl 0997.49019
[17] Jahn, J.: Mathematical vector optimization in partially ordered spaces. (1986) · Zbl 0578.90048
[18] P. Loridan, Well-posedness in vector optimization, Cermsem 95.25. · Zbl 0848.49017
[19] Peressini, A. L.: Ordered topological vector spaces. (1967) · Zbl 0169.14801
[20] Phelps, R. R.: Convex functions, monotone operators and differentiability. Lecture notes in mathematics 1364 (1993) · Zbl 0921.46039
[21] Rockafellar, R. T.: Convex analysis. (1970) · Zbl 0193.18401
[22] Schaefer, H. H.: Topological vector spaces, graduate texts in mathematics. (1971) · Zbl 0212.14001
[23] Singer, I.: Basis in Banach spaces I. (1970) · Zbl 0198.16601
[24] Tammer, Chr.: A generalization of Ekeland’s variational principle. Optimization 25, 129-141 (1992) · Zbl 0817.90098
[25] Chr. Tammer, A variational principle and applications for vectorial control approximation problems, Reports, Institute of Optimization and Stochastics, Martin-Luther Universität Halle-Wittenberg, 1996.
[26] M. Théra, Études des fonctions convexes vectorielles semi-continues, Thèse de 3e cycle, Université de Pau, 1978.