Algebraic convergence of Markov chains. (English) Zbl 1030.60070

The authors investigate criteria for the polynomial, i.e., algebraic, convergence of time-homogeneous reversible Markov chains on countable state spaces with respect to \(L^2\)-norms. The results are in particular applied to birth-death random walks in continuous time. Moreover, the technical results are illustrated by several concrete examples.


60J27 Continuous-time Markov processes on discrete state spaces
60F25 \(L^p\)-limit theorems
Full Text: DOI


[1] CHEN, M. F. (1991). Exponential L2-convergence and L2-spectral gap for Markov processes. Acta Math. Sinica (N.S.) 71 19-37. · Zbl 0738.60076
[2] CHEN, M. F. (1992). From Markov to Non-Equilibrium Particle Sy stems. World Scientific, Singapore.
[3] CHEN, M. F. (1994). Optimal Markovian coupling and applications. Acta. Math. Sinica (N.S.) 10 260-275. · Zbl 0813.60068
[4] CHEN, M. F. (1996). Estimation of spectral gap for Markov chains. Acta Math. Sinica (N.S.) 12 337-360. · Zbl 0867.60038
[5] CHEN, M. F. (1997). Coupling, spectral gap and related topics. Chinese Sci. Bull. 42 1321- 1327, 1409-1416, 1497-1505. · Zbl 0892.58078
[6] CHEN, M. F. (1999). Analy tic proof of dual variational formula for the first eigenvalue in dimension one. Sci. Sinica 42 805-815. · Zbl 0936.35120
[7] CHEN, M. F. and LI, S. F. (1989). Coupling methods for multidimensional diffusion processes. Ann. Probab. 17 151-177. · Zbl 0686.60083
[8] DEUSCHEL, J. D. (1994). Algebraic L2 decay of attractive critical processes on the lattice. Ann. Probab. 22 264-283. · Zbl 0811.60089
[9] DIACONIS, P. and STROOCK, D. W. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 36-61. · Zbl 0731.60061
[10] FORT, G. and MOULINES, E. (1999). V -subgeometric ergodicity for a Hastings-Metropolis algorithm. Preprint. Available at www.statslab.cam.ac.uk/ mcmc/. URL: · Zbl 0981.60032
[11] JARNER, S. F. and ROBERTS, G. (2000). Poly nomial convergence rates of Markov chains. Preprint. Available at www.statslab.cam.ac.uk/ mcmc/. URL:
[12] LIGGETT, T. M. (1989). Exponential L2 convergence of attractive reversible nearest particle sy stems. Ann. Probab. 17 403-432. · Zbl 0679.60093
[13] LIGGETT, T. M. (1991). L2 rates of convergence for attractive reversible nearest particle sy stems: The critical case. Ann. Probab. 19 935-959. · Zbl 0737.60092
[14] SALOFF-COSTE, L. (1997). Lectures on Finite Markov Chains. Lecture Notes in Math. 1665 301-413. Springer, Berlin. · Zbl 0885.60061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.