×

Conformal restriction: The chordal case. (English) Zbl 1030.60096

In previous papers, the authors succeeded in computing the intersection exponents of SLE\(_6\) (stochastic Loewner evolution). The determination of exponents for SLE\(_6\) was also used to compute critical exponents for two-dimensional percolation. In the present paper, the authors go on investigating the chordal restriction measures and their relationship to SLE\(_k\). They prove that there exists a one-parameter family P\(_{\alpha}\) \((\alpha\geq 5/8)\) of such probability measures with P\(_{5/8}\) being exactly the law of chordal SLE\(_{8/3}\). A slightly different restriction property (right-sided property) is also studied; it is related to the reflected Brownian excursion and Bessel-type processes. These results help to understand the scaling limit and exponents of the two-dimensional self-avoiding walk and the relationship between SLE and conformal field theory.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B27 Critical phenomena in equilibrium statistical mechanics
60J65 Brownian motion
30C99 Geometric function theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0272.30012
[2] M. Bauer, D. Bernard (2002), SLE\(_k\) growth processes and conformal field theories, Phys. Lett. B 543, 135-138. · Zbl 0997.60119
[3] M. Bauer, D. Bernard (2002), Conformal Field Theories of Stochastic Loewner Evolutions, arXiv:hep-th/0210015. · Zbl 1046.81091
[4] V. Beffara (2002), Hausdorff dimensions for SLE\(_6\), arXiv:math.PR/0204208. · Zbl 1055.60036
[5] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, J. Statist. Phys. 34 (1984), no. 5-6, 763 – 774. · doi:10.1007/BF01009438
[6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333 – 380. · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[7] R. van den Berg, A. Jarai (2002), The lowest crossing in 2D critical percolation, arXiv: math.PR/0201030.
[8] K. Burdzy, Multidimensional Brownian excursions and potential theory, Pitman Research Notes in Mathematics Series, vol. 164, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. · Zbl 0691.60066
[9] J.L. Cardy (1984), Conformal invariance and surface critical behavior, Nucl. Phys. B240 (FS12), 514-532.
[10] John L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992), no. 4, L201 – L206. · Zbl 0965.82501
[11] L. Carleson, N. Makarov (2002), Laplacian path models, J. Anal. Math. 87, 103-150. · Zbl 1040.30011
[12] J. Dubédat (2003), Reflected planar Brownian motions, intertwining relations and crossing probabilities, math.PR/0302250, preprint. · Zbl 1054.60085
[13] J. Dubédat (2003), \(SLE(\kappa,\rho)\) martingales and duality, math.PR/0303128, preprint. · Zbl 1096.60037
[14] Bertrand Duplantier, Random walks and quantum gravity in two dimensions, Phys. Rev. Lett. 81 (1998), no. 25, 5489 – 5492. · Zbl 0949.83056 · doi:10.1103/PhysRevLett.81.5489
[15] B. Duplantier, K.-H. Kwon (1988), Conformal invariance and intersection of random walks, Phys. Rev. Let. 61, 2514-2517.
[16] B. Duplantier and H. Saleur, Exact surface and wedge exponents for polymers in two dimensions, Phys. Rev. Lett. 57 (1986), no. 25, 3179 – 3182. · doi:10.1103/PhysRevLett.57.3179
[17] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. · Zbl 0514.30001
[18] R. Friedrich, W. Werner (2002), Conformal fields, restriction properties, degenerate representations and SLE, C.R. Ac. Sci. Paris Ser. I Math 335, 947-952. · Zbl 1101.81095
[19] R. Friedrich, W. Werner (2003), Conformal restriction, highest-weight representations and SLE, math-ph/0301018, preprint. · Zbl 1030.60095
[20] T. Kennedy (2002), A faster implementation of the pivot algorithm for self-avoiding walks, J. Stat. Phys. 106, 407-429. · Zbl 1001.82061
[21] T. Kennedy (2002), Monte Carlo tests of SLE predictions for the 2D self-avoiding walk, Phys. Rev. Lett. 88, 130601.
[22] T. Kennedy (2002), Conformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk - Monte Carlo Tests, arXiv:math.PR/0207231.
[23] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[24] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083 · doi:10.1007/BF02392619
[25] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. III. Two-sided exponents, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 109 – 123 (English, with English and French summaries). · Zbl 1006.60075 · doi:10.1016/S0246-0203(01)01089-5
[26] G.F. Lawler, O. Schramm, W. Werner (2002), Analyticity of planar Brownian intersection exponents. Acta Mathematica 189, 179-201. · Zbl 1024.60033
[27] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Sharp estimates for Brownian non-intersection probabilities, In and out of equilibrium (Mambucaba, 2000) Progr. Probab., vol. 51, Birkhäuser Boston, Boston, MA, 2002, pp. 113 – 131. · Zbl 1011.60062
[28] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, One-arm exponent for critical 2D percolation, Electron. J. Probab. 7 (2002), no. 2, 13. · Zbl 1015.60091
[29] G.F. Lawler, O. Schramm, W. Werner (2001), Conformal invariance of planar loop-erased random walks and uniform spanning trees, arXiv:math.PR/0112234, Ann. Prob., to appear. · Zbl 1126.82011
[30] G.F. Lawler, O. Schramm, W. Werner (2002), On the scaling limit of planar self-avoiding walks, math.PR/0204277, in Fractal geometry and application, A jubilee of Benoit Mandelbrot, AMS Proc. Symp. Pure Math., to appear.
[31] G.F. Lawler, O. Schramm, W. Werner (2002), Conformal restriction: the radial case, in preparation. · Zbl 1030.60096
[32] Gregory F. Lawler and Wendelin Werner, Universality for conformally invariant intersection exponents, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 4, 291 – 328. · Zbl 1098.60081 · doi:10.1007/s100970000024
[33] G.F. Lawler, W. Werner (2003), The Brownian loop soup, preprint. · Zbl 1049.60072
[34] Benoit B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., San Francisco, Calif., 1982. Schriftenreihe für den Referenten. [Series for the Referee]. · Zbl 0504.28001
[35] B. Nienhuis, E.K. Riedel, M. Schick (1980), Magnetic exponents of the two-dimensional \(q\)-states Potts model in two dimensions, J. Phys A 13, L. 189-192.
[36] B. Nienhuis (1984), Critical behavior in two dimensions and charge symmetry of the Coulomb gas, J. Stat. Phys. 34, 731-761. · Zbl 0595.76071
[37] M.P.M. den Nijs (1979), A relation between the temperature exponents of the eight-vertex and the \(q\)-state Potts model, J. Phys. A 12, 1857-1868.
[38] R.P. Pearson (1980), Conjecture for the extended Potts model magnetic eigenvalue, Phys. Rev. B 22, 2579-2580.
[39] Christian Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen; Studia Mathematica/Mathematische Lehrbücher, Band XXV. · Zbl 0298.30014
[40] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. · Zbl 0762.30001
[41] Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1994. · Zbl 0804.60001
[42] S. Rohde, O. Schramm (2001), Basic properties of SLE, arXiv:math.PR/0106036, preprint. · Zbl 1081.60069
[43] H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58 (1987), no. 22, 2325 – 2328. · doi:10.1103/PhysRevLett.58.2325
[44] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221 – 288. · Zbl 0968.60093 · doi:10.1007/BF02803524
[45] Oded Schramm, A percolation formula, Electron. Comm. Probab. 6 (2001), 115 – 120. · Zbl 1008.60100 · doi:10.1214/ECP.v6-1041
[46] Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239 – 244 (English, with English and French summaries). · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[47] S. Smirnov, W. Werner (2001), Critical exponents for two-dimensional percolation, Math. Res. Lett. 8, 729-744. · Zbl 1009.60087
[48] S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), no. 4, 405 – 443. · Zbl 0579.60082 · doi:10.1002/cpa.3160380405
[49] B. Virág (2003), Brownian beads, in preparation. · Zbl 1035.60085
[50] Wendelin Werner, Critical exponents, conformal invariance and planar Brownian motion, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 87 – 103. · Zbl 1037.60086
[51] W. Werner (2003), Girsanov’s Theorem for SLE \((\kappa,\rho)\) processes, intersection exponents and hiding exponents, math.PR/0302115, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.