zbMATH — the first resource for mathematics

Iterative techniques for time dependent Stokes problems. (English) Zbl 1030.76506
The paper is concerned with numerical solution of the coupled systems of discrete equations resulting from implicit time stepping procedures for the linearized Navier- Stokes problem. As spatial discretization the authors use a mixed finite element method. They build preconditioners which give rise to iterative rates of convergence that are independent of both the mesh size as well as time step and Reynolds number parameter.

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI
[1] Bramble, J.H.; Pasciak, J.E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. comp., 50, 1-18, (1988) · Zbl 0643.65017
[2] Bramble, J.H.; Pasciak, J.E., A domain decomposition technique for Stokes problems, App. num. math., 6, 251-261, (1990) · Zbl 0691.76031
[3] Rusten, T.; Winther, R., A preconditioned iterative method for saddle point problems, SIAM J. matrix anal. appl., 13, 887-904, (1992) · Zbl 0760.65033
[4] Cahouet; Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, Int. J. numer. meth. in fluid, 8, 869-895, (1988) · Zbl 0665.76038
[5] Maday, Y.; Meiron, D.; Patera, A.T.; Ronquist, E.M., Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations, SIAM J. stat. comp., 310-337, (1993) · Zbl 0769.76047
[6] Grisvard, P., Elliptic problems in nonsmooth domains, (1985), Pitman Boston · Zbl 0695.35060
[7] Lions, J.L.; Magenes, E., ()
[8] Nec̆as, J., LES Méthodes directes en théorie des équations elliptiques, (1967), Academia Prague · Zbl 1225.35003
[9] Girault, V.; Raviart, P.A., Finite element approximation of the Navier-Stokes equations, () · Zbl 0396.65070
[10] Kellogg, R.B.; Osborn, J.E., A regularity result for the Stokes problem in a convex polygon, Jour. funct. anal., 21, 397-431, (1976) · Zbl 0317.35037
[11] Dauge, M., Stationary Stokes and Navier-Stokes systems on two- and three-dimensional domains with corners. part I: linearized equations, SIAM J. math. anal., 20, 74-97, (1989) · Zbl 0681.35071
[12] Nedelec, J.C., Elements finis mixtes incompressibles pour l’equation de Stokes dans R^{3}, Numer. math., 39, 97-112, (1982) · Zbl 0488.76038
[13] Scott, L.R.; Vogelius, M., Conforming finite element methods for incompressible and nearly incompressible continua, (), 221-244 · Zbl 0582.76028
[14] Bramble, J.H., The Lagrange multiplier method for Dirichlet’s problem, Math. comp., 37, 1-12, (1981) · Zbl 0477.65077
[15] Bramble, J.H.; Pasciak, J.E., A boundary parametric approximation to the linearized scalar potential magnetostatic field problem, Appl. numer. math., 1, 493-514, (1985) · Zbl 0619.65113
[16] Raviart, P.A.; Thomas, J.M., A mixed finite element method for 2^{nd} order elliptic problems, (), 292-315
[17] Aziz, A.K.; Babus̆ka, I., Part I, survey lectures on the mathematical foundations of the finite element method, (), 1-362
[18] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland New York · Zbl 0445.73043
[19] Ciarlet, P.G., Basic error estimates for elliptic problems, (), 18-352 · Zbl 0198.14601
[20] Johnson, C.; Pitkäranta, J., Analysis of some mixed finite element methods related to reduced integration, Math. comp., 38, 375-400, (1982) · Zbl 0482.65058
[21] Bramble, J.H.; Pasciak, J.E., The analysis of smoothers for multigrid algorithms, Math. comp., 58, 467-488, (1992) · Zbl 0771.65082
[22] Bramble, J.H.; Pasciak, J.E.; Xu, J., The analysis of multigrid algorithms with non-nested spaces or non-inherited quadratic forms, Math. comp., 56, 1-34, (1991) · Zbl 0718.65081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.