[1] |
A.A. Benczúr, Parallel and fast sequential algorithms for undirected edge connectivity augmentation, Math. Prog. B 84(3) (1999) 595--640; Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 1994, pp. 658--667. |

[2] |
A.A. Benczúr, J. Förster, Z. Király, Dilworth’s theorem and its application for path systems of a cycle--implementation and analysis. Proceedings of the European Symposium Algebra, Springer, Lecture Notes in Computer Science, Vol. 1643, 1999, pp. 598--509. · Zbl 0946.05049 |

[3] |
A.A. Benczúr, D.R. Karger, Augmenting undirected edge-connectivity in O \tilde{}(n2) time J. Alg. 37(1), (2000) 2--36; Proceedings of the Ninth ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 500--509. · Zbl 0962.68135 |

[4] |
Cai, G. -P.; Sun, Y. -G.: The minimum augmentation of any graph to a k-edge-connected graph. Networks 19, 151-172 (1989) · Zbl 0672.05057 |

[5] |
A. Frank, Combinatorial algorithms, algorithmic proofs, Doctoral Thesis, Budapest, Eötvös University, 1976 (in Hungarian). |

[6] |
A. Frank, Augmenting graphs to meet edge connectivity requirements, SIAM J. Discr. Math. 5(1) (1992), 25--53; Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, 1990. · Zbl 0782.05054 |

[7] |
Frank, A.: Finding minimum generators of path systems. J. combin. Theory B 75, 237-244 (1999) · Zbl 0938.05036 |

[8] |
A. Frank, Finding minimum weighted generators of a path system, in: R.L. Graham, J. Kratochvil, J. Nesetril, F.S. Roberts (Eds.), Contemporary Trends in Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, Providence, Rhode Island, Vol. 49, 1999, pp. 129--138. · Zbl 0978.90103 |

[9] |
A. Frank, Finding minimum edge-coverings of pairs of subsets, EGRES Technical Report Series (2001). Available at http://www.cs.elte.hu/egres/ |

[10] |
Frank, A.; Jordán, T.: Minimal edge-coverings of pairs of sets. J. combin. Theory B 65, 73-110 (1995) · Zbl 0830.05051 |

[11] |
Franzblau, D. S.; Kleitman, D. J.: An algorithm for constructing polygons with rectangles. Inform. control 63, 164-189 (1984) · Zbl 0591.68073 |

[12] |
Ford, L. R.; Fulkerson, D. R.: Flows in networks. (1962) · Zbl 0106.34802 |

[13] |
H.N. Gabow, Efficient splitting off algorithms for graphs, Proceedings of the 26th Annual ACM Symposium on Theory of Computing, 1994, pp. 696--705. |

[14] |
Goemans, M. X.; Williamson, D. P.: The primal-dual method for approximation algorithms and its application to network design problems. Approximation algorithms for NP-hard problems (1997) |

[15] |
Grötschel, M.; Lovász, L.; Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169-197 (1981) · Zbl 0492.90056 |

[16] |
Gyo?ri, E.: A MIN--MAX theorem on intervals. J. combin. Theory B 37, 1-9 (1984) |

[17] |
Hopcroft, J. E.; Karp, R. M.: An n5/2 algorithm for maximum matching in bipartite graphs. SIAM J. Comp. 2, 225-231 (1973) · Zbl 0266.05114 |

[18] |
Jordán, T.: On the optimal vertex connectivity augmentation. J. combin. Theory ser. B 63, 8-20 (1995) · Zbl 0824.05042 |

[19] |
D.R. Karger, M.S. Levine, Finding maximum flows in simple undirected graphs is easier than bipartite matching, Proceedings of the 30th ACM Symposium on Theory of Computing, 1998. · Zbl 1028.68106 |

[20] |
D.E. Knuth, Irredundant intervals, ACM J. Experimental Algorithmics 1 (1996) (article1, pp.19). · Zbl 1073.68697 |

[21] |
Lubiw, A.: A weighted MIN--MAX relation for intervals. J. combin. Theory B 53, 151-172 (1991) · Zbl 0758.05003 |

[22] |
D. Naor, D. Gusfield, Ch. Martel, A fast algorithm for optimally increasing the edge connectivity, Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, 1990, pp. 698--707. |

[23] |
Watanabe, T.; Nakamura, A.: Edge connectivity augmentation problems. J. comput. System sci. 35, 96-144 (1987) · Zbl 0622.68057 |