×

zbMATH — the first resource for mathematics

Implementation of penalty function methods in LISP. (English) Zbl 1030.90121
The paper describes several implementations of penalty function methods for constrained nonlinear optimization, in the programming language LISP and in Mathematica. The authors show the possibility and some advantages of symbolic processing approach, compared to numerical approach.
MSC:
90C30 Nonlinear programming
Software:
Mathematica
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] David M.H.: Applied Nonlinear Programming. McGraw-Hill Book Company, 1972. · Zbl 0241.90051
[2] Dixon L.C, Price R.C.: Truncated Newton method for sparse unconstrained optimization using automatic differentiation. J. Optimiz. Theory Appl. 60 (1989), 261-275. · Zbl 0632.90060 · doi:10.1007/BF00940007
[3] Griewank A., Corliss G.F.: Automatic differentiation of algorithms. Proceedings of the first SIAM Workshop on Automatic Differentiation, SIAM, Philadelphia, 1991. · Zbl 0747.00030
[4] Henessey L.W.: Common LISP. McGraw-Hill Book Company, 1989.
[5] Hyvonen E., Seppanen J.: Introduction to LISP and functional programming. Moskva, ”Mir”, 1990.
[6] Jacoby S.L.S., Kowalik J.S., Pizzo J.T.: Iterative methods for nonlinear optimization problems. Prentice-Hall, Inc, Englewood, New Jersey, 1977. · Zbl 0315.65036
[7] Parker T.S., Chua L.O.: INSITE- a software toolkit for the analysis of nonlinear dynamic systems. Proceedings of the IEEE 75 (1987), 1081-1089. · doi:10.1109/PROC.1987.13851
[8] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical recipes in C. Cambridge University Press, New York, Melbourne, Sydney, 1990. · Zbl 0661.65001
[9] Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical recipes. Cambridge University Press, New York, Melbourne, Sydney, 1986. · Zbl 0587.65005
[10] Richard W.S.: LISP, Lore and Logic. Springer-Verlag, 1990.
[11] Smith J.D.: An Introduction to Scheme. Prentice Hall, Englewood Cliffs, New Jersey, 1988.
[12] Stanimirovič P., Rančic S.: Unidimensional search optimization in LISP. Proceedings of the II Mathematical Conference in Pristina (1996), 253-262. · Zbl 1071.90568
[13] Stanimirovič P., Rančic S.: Unconstrained optimization in LISP. XI Conference on Applied Mathematics, Budva (1996), 355-362. · Zbl 1009.65511
[14] Stojanov S.: Methods and Algorithms for Optimization. Drzavno izdatelstvo, Tehnika, Sofija, 1990.
[15] Sussman G.J.: Structure and interpretation of computer programs. MIT Press, Cambridge, Massachusetts, 1985. · Zbl 1092.68550
[16] Wilensky R.: Common LISPcraft. Norton, New York, 1986. · Zbl 0579.68006
[17] Wolfram S.: Mathematical a system for doing mathematics by computer. Addison-Wesley Publishing Co, Redwood City, California, 1991.
[18] Wolfram S.: Mathematica Book. Version 3.0, Wolfram Media and Cambridge University Press, 1996. · Zbl 0878.65001
[19] Zlobec S., Petric J.: Nonlinear programming. Naučna Knjiga, Beograd, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.