zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function. (English) Zbl 1030.90123
Summary: We propose and analyze a class of penalty-function-free nonmonotone trust-region methods for nonlinear equality constrained optimization problems. The algorithmic framework yields global convergence without using a merit function and allows nonmonotonicity independently for both, the constraint violation and the value of the Lagrangian function. Similar to the Byrd-Omojokun class of algorithms, each step is composed of a quasi-normal and a tangential step. Both steps are required to satisfy a decrease condition for their respective trust-region subproblems. The proposed mechanism for accepting steps combines nonmonotone decrease conditions on the constraint violation and/or the Lagrangian function, which leads to a flexibility and acceptance behavior comparable to filter-based methods. We establish the global convergence of the method. Furthermore, transition to quadratic local convergence is proved. Numerical tests are presented that confirm the robustness and efficiency of the approach.

90C30Nonlinear programming
90C55Methods of successive quadratic programming type
90C06Large-scale problems (mathematical programming)
Full Text: DOI