zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hybrid feedback stabilization of systems with quantized signals. (English) Zbl 1030.93042
The author generalizes previous work of himself and R. Brackett (2000). He considers more general types of quantizers with quantization regions having arbitrary shapes as in [{\it J. Lunze}, {\it B. Nixdorf}, and {\it J. Schröder}, ibid. 35, 395-406 (1999; Zbl 0942.93026)]. In addition, he addresses the quantized feedback stabilization problem for nonlinear systems. Analogous results for systems with input quantization, both linear and nonlinear are developed in this paper. He uses Lyapunov stability, hybrid systems, and input to state stability notions for the analysis.

MSC:
93D15Stabilization of systems by feedback
93B12Variable structure systems
93D25Input-output approaches to stability of control systems
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Åström, K. J., & Bernhardsson, B. (1999). Comparison of periodic and event based sampling for first-order stochastic systems. In Proceedings of the 14th IFAC World congress (pp. 301-306).
[2] Brockett, R. W.; Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE transactions on automatic control 45, 1279-1289 (2000) · Zbl 0988.93069
[3] Bushnell, L. (Ed.) (2001). Special section on networks and control. IEEE Control Systems Magazine, 21, 22-99.
[4] Chou, J. -H.; Chen, S. -H.; Horng, I. -R.: Robust stability bound on linear time-varying uncertainties for linear digital control systems under finite wordlength effects. JSME international journal series C 39, 767-771 (1996)
[5] Delchamps, D. F.: Extracting state information from a quantized output record. Systems control letters 13, 365-372 (1989) · Zbl 0697.93012
[6] Delchamps, D. F.: Stabilizing a linear system with quantized state feedback. IEEE transactions on automatic control 35, 916-924 (1990) · Zbl 0719.93067
[7] Du, Q.; Faber, V.; Gunzburger, M.: Centroidal Voronoi tessellationsapplications and algorithms. SIAM review 41, 637-676 (1999) · Zbl 0983.65021
[8] Elia, N.; Mitter, S. K.: Stabilization of linear systems with limited information. IEEE transactions on automatic control 46, 1384-1400 (2001) · Zbl 1059.93521
[9] Fah, N. C. S.: Input-to-state stability with respect to measurement disturbances for one-dimensional systems. ESAIM journal of control, optimization and calculus of variations 4, 99-122 (1999) · Zbl 0918.93051
[10] Feng, X.; Loparo, K. A.: Active probing for information in control systems with quantized state measurementsa minimum entropy approach. IEEE transactions on automatic control 42, 216-238 (1997) · Zbl 0870.93038
[11] Filippov, A. F.: Differential equations with discontinuous righthand sides. (1988) · Zbl 0664.34001
[12] Freeman, R. A.: Global internal stabilizability does not imply global external stabilizability for small sensor disturbances. IEEE transactions on automatic control 40, 2119-2122 (1995) · Zbl 0843.93060
[13] Freeman, R. A., & Kokotović, P. V. (1993). Global robustness of nonlinear systems to state measurement disturbances. In Proceedings of the 32nd IEEE conference on decision and control, San Antonia, Texas, USA (pp. 1507-1512).
[14] Hu, B., Feng, Z., & Michel, A. N. (1999). Quantized sampled-data feedback stabilization for linear and nonlinear control systems. In Proceedings of the 38th IEEE conference on decision and control, Phoenix, Arizona, USA (pp. 4392-4397).
[15] Ishii, H.; Francis, B. A.: Stabilizing a linear system by switching control with Dwell time. IEEE transactions on automatic control 47, 1962-1973 (2002)
[16] Jiang, Z. -P.; Mareels, I.; Hill, D.: Robust control of uncertain nonlinear systems via measurement feedback. IEEE transactions on automatic control 44, 807-812 (1999) · Zbl 0957.93072
[17] Kofman, E. (2001). Quantized-state control. A method for discrete event control of continuous systems. Technical Report LSD0105, LSD, Universidad Nacional de Rosario, Argentina. Latin American Applied Research, 33(4), (to appear).
[18] Liberzon, D. (2000). Nonlinear stabilization by hybrid quantized feedback. In N. Lynch & B. H. Krogh (Eds.), Proceedings of the third international workshop on hybrid systems: computation and control, Lecture Notes in Computer Science, Vol. 1790 (pp. 243-257). Berlin: Springer. · Zbl 0952.93109
[19] Liberzon, D.; Brockett, R. W.: Nonlinear feedback systems perturbed by noisesteady-state probability distributions and optimal control. IEEE transactions on automatic control 45, 1116-1130 (2000) · Zbl 0972.93076
[20] Lunze, J.; Nixdorf, B.; Schröder, J.: Deterministic discrete-event representations of linear continuous-variable systems. Automatica 35, 395-406 (1999) · Zbl 0942.93026
[21] Raisch, J. (1995). Control of continuous plants by symbolic output feedback. In P. Antsaklis, et al. (Eds.), Hybrid systems II (pp. 370-390). Berlin: Springer.
[22] Sontag, E. D.: Smooth stabilization implies coprime factorization. IEEE transactions on automatic control 34, 435-443 (1989) · Zbl 0682.93045
[23] Sontag, E. D.: Clocks and insensitivity to small measurement errors. ESAIM journal of control, optimisation and calculus of variations 4, 537-557 (1999) · Zbl 0984.93068
[24] Sontag, E. D.; Wang, Y.: On characterizations of the input-to-state stability property. Systems control letters 24, 351-359 (1995) · Zbl 0877.93121
[25] Sontag, E. D.; Wang, Y.: New characterizations of input-to-state stability. IEEE transactions on automatic control 41, 1283-1294 (1996) · Zbl 0862.93051
[26] Sur, J.; Paden, B. E.: State observer for linear time-invariant systems with quantized output. Transactions of the ASME, journal of dynamical systems measurement and control 120, 423-426 (1998)
[27] Wong, W. S.; Brockett, R. W.: Systems with finite communication bandwidth constraints iistabilization with limited information feedback. IEEE transactions on automatic control 44, 1049-1053 (1999) · Zbl 1136.93429