×

Improved local well-posedness for quasilinear wave equations in dimension three. (English) Zbl 1031.35091

This paper is devoted to the initial value problem for quasilinear wave equations of the form \[ \begin{gathered} \partial^2_t\varphi- g^{ij}(\varphi) \partial_i\partial_j\varphi= N(\varphi,\partial\varphi),\\ \varphi|_{t=0}= \varphi_0,\quad \partial_t\varphi|_{t=0}= \varphi_1.\end{gathered}\tag{1} \] The authors improve recent results of H. Bahouri and J. Y. Chernin and of D. Tataru concerning local well-posedness for (1). Their approach is based on the proof of the Strichartz estimates using a combination of geometric methods and harmonic analysis. The authors use in an essential way the fact that the coefficients \(g^{ij}(\varphi)\) in (1) themselves verify an equation of the type \(\square_g g_{ij}= N\) with \(N\) depending only on \(\varphi\) and \(\partial\varphi\). Here \(\square\) denotes standard linear wave operator.

MSC:

35L15 Initial value problems for second-order hyperbolic equations
35L70 Second-order nonlinear hyperbolic equations
58J45 Hyperbolic equations on manifolds
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI

References:

[1] H. Bahouri and J.-Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif , Internat. Math. Res. Notices 1999 , 1141–1178. · Zbl 0938.35106 · doi:10.1155/S107379289900063X
[2] –. –. –. –., Équations d’ondes quasilinéaires et estimation de Strichartz , Amer. J. Math. 121 (1999), 1337–1377. · Zbl 0952.35073 · doi:10.1353/ajm.1999.0038
[3] D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space , Princeton Math. Ser. 41 , Princeton Univ. Press, Princeton, 1993. · Zbl 0827.53055
[4] D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds , Comm. Pure Appl. Math. 27 (1974), 715–727. · Zbl 0295.53025 · doi:10.1002/cpa.3160270601
[5] L. V. Kapitanskiĭ, Estimates for norms in Besov and Lizorkin-Triebel spaces for solutions of second-order linear hyperbolic equations , J. Soviet Math. 56 (1991), 2348–2389. · Zbl 0759.35014 · doi:10.1007/BF01671936
[6] S. Klainerman, A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations , Internat. Math. Res. Notices 2001 , 221–274. · Zbl 0993.35022 · doi:10.1155/S1073792801000137
[7] H. Lindblad, Counterexamples to local existence for semi-linear wave equations , Amer. J. Math. 118 (1996), 1–16. · Zbl 0855.35080 · doi:10.1353/ajm.1996.0002
[8] G. Mockenhaupt, A. Seeger, and C. Sogge, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates , J. Amer. Math. Soc. 6 (1993), 65–130. JSTOR: · Zbl 0776.58037 · doi:10.2307/2152795
[9] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions , Comm. Partial Differential Equations 18 (1993), 169–177. · Zbl 0803.35096 · doi:10.1080/03605309308820925
[10] L. Simon, Lectures on Geometric Measure Theory , Proc. Centre Math. Anal. Austral. Nat. Univ. 3 , Australian National Univ., Canberra, 1983. · Zbl 0546.49019
[11] H. F. Smith, A parametrix construction for wave equations with \(C^1,1\) coefficients , Ann. Inst. Fourier (Grenoble) 48 (1998), 797–835. · Zbl 0974.35068 · doi:10.5802/aif.1640
[12] H. F. Smith and C. D. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics , Math. Res. Lett. 1 (1994), 729–737. · Zbl 0832.35018 · doi:10.4310/MRL.1994.v1.n6.a9
[13] H. F. Smith and D. Tataru, Sharp counterexamples for Strichartz estimates for low regularity metrics , Math. Res. Lett. 9 (2002), 199–204. \CMP1 909 638 · Zbl 1003.35075 · doi:10.4310/MRL.2002.v9.n2.a6
[14] D. Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation , Amer. J. Math. 122 (2000), 349–376. · Zbl 0959.35125 · doi:10.1353/ajm.2000.0042
[15] –. –. –. –., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, II , Amer. J. Math. 123 (2001), 385–423. · Zbl 0988.35037 · doi:10.1353/ajm.2001.0021
[16] –. –. –. –., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients, III , J. Amer. Math. Soc. 15 (2002), 419–442. JSTOR: · Zbl 0990.35027 · doi:10.1090/S0894-0347-01-00375-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.