zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. (English) Zbl 1032.34040
The author provides new existence results for the periodic boundary value problem $$ x''=f(t,x), \quad x(0)=x(T),\ x'(0)=x'(T), \leqno (1) $$ where $f$ is a Carathéodory function. The proofs are based on the Krasnoselskii fixed-point theorem for completely continuous operators in a Banach space that exhibits a cone compression and expansion, and on the sign behaviour of Green’s function of the linearized equation. The main results are contained in two theorems which give conditions guaranteeing the existence of a positive solution to (1). Modified assertions for negative solutions are shown. As applications of these general results, the author obtains new existence results for equations with jumping nonlinearities and for equations with a repulsive or attractive singularity in the origin. Weak singularities are considered here, too.

34C25Periodic solutions of ODE
34B16Singular nonlinear boundary value problems for ODE
34B15Nonlinear boundary value problems for ODE
Full Text: DOI
[1] Bevc, V.; Palmer, J. L.; Süsskind, C.: On the design of the transition region of axi-symmetric magnetically focusing beam valves. J. br inst. Radio eng. 18, 696-708 (1958)
[2] Ding, T.: A boundary value problem for the periodic Brillouin focusing system. Acta sci. Natur. univ. Pekinensis 11, 31-38 (1965)
[3] De Coster, C.; Habets, P.: Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results. Cism-icms 371, 1-78 (1996) · Zbl 0889.34018
[4] Del Pino, I.; Manásevich, R.; Montero, A.: T-periodic solutions for some second order differential equations with singularities. Proc. roy. Soc. edinbourgh sect. A 120, 231-243 (1992) · Zbl 0761.34031
[5] Drábek, P.: Landesman-lazer condition for nonlinear problems with jumping nonlinearities. J. differential equations 85, 186-199 (1990) · Zbl 0699.34019
[6] Esmailzadeh, E.; Nakhaie-Jazar, G.: Periodic solutions of a Mathieu-Duffing type equation. J. non. Linear mech. 32, 905-912 (1997) · Zbl 0881.34064
[7] Erbe, L. H.; Mathsen, R. M.: Positive solutions for singular nonlinear boundary value problems. Nonlinear anal. 46, 979-986 (2001) · Zbl 1007.34020
[8] Erbe, L. H.; Wang, H.: On the existence of positive solutions of ordinary differential equations. Proc. amer. Math. soc. 120, 743-748 (1994) · Zbl 0802.34018
[9] Fonda, A.: Periodic solutions of scalar second order differential equations with a singularity. Mém. classe sci. Acad. roy. Belgique 8-IV, 68-98 (1993) · Zbl 1221.34110
[10] Fonda, A.; Habets, P.: Periodic solutions of asymptotically positively homogeneous differential equations. J. differential equations 81, 68-98 (1989) · Zbl 0692.34041
[11] Friedman, B.: Principles and techniques of applied mathematics. (1990) · Zbl 1227.00033
[12] Gaete, S.; Manasevich, R. F.: Existence of a pair of periodic solutions of an ODE generalizing a problem in nonlinear elasticity, via variational methods. J. math. Anal. appl. 134, 257-271 (1988) · Zbl 0672.34030
[13] Guo, D.; Laksmikantham, V.: Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces. J. math. Anal. appl. 129, 211-222 (1988) · Zbl 0645.34014
[14] Habets, P.; Sanchez, L.: Periodic solution of some Liénard equations with singularities. Proc. amer. Math. soc. 109, 1135-1144 (1990)
[15] Henderson, J.; Wang, H.: Positive solutions for nonlinear eigenvalue problems. J. math. Anal. appl. 208, 252-259 (1997) · Zbl 0876.34023
[16] Ianacci, R.; Nkashama, M. N.; Omari, P.; Zanolin, F.: Periodic solutions of forced Liénard equations with jumping nonlinearities under nonuniform conditions. Proc. roy. Soc. Edinburgh sect. A 110, 183-198 (1988) · Zbl 0693.34046
[17] Krasnosel’skii, M. A.: Positive solutions of operator equations. (1964)
[18] Lazer, A. C.; Mckenna, P. J.: Large-amplitude periodic oscillations in suspension bridgessome new connections with nonlinear analysis. SIAM rev. 32, 537-578 (1990) · Zbl 0725.73057
[19] Lazer, A. C.; Solimini, S.: On periodic solutions of nonlinear differential equations with singularities. Proc. amer. Math. soc. 99, 109-114 (1987) · Zbl 0616.34033
[20] R. Martins, Existence of periodic solutions for second-order differential equations with singularities and the strong force condition, preprint. · Zbl 1100.34033
[21] Mawhin, J.: Topological degree and boundary value problems for nonlinear differential equations. Lecture notes in mathematics 1537, 74-142 (1993) · Zbl 0798.34025
[22] Atici, F. Merivenci; Guseinov, G. Sh.: On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions. J. comput. Appl. math. 132, 341-356 (2001) · Zbl 0993.34022
[23] Omari, P.; Ye, W. -Y.: Necessary and sufficient conditions for the existence of periodic solutions of second-order ordinary differential equations with singular nonlinearities. Differential integral equations 8, 1843-1858 (1995) · Zbl 0831.34048
[24] Rachunková, I.: Existence of two positive solutions of a singular nonlinear periodic boundary value problems. J. differential equations 176, 445-469 (2001)
[25] Rachunková, I.; Tvrdý, M.; Vrkoc\breve{}, I.: Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. differential equations 176, 445-469 (2001) · Zbl 1004.34008
[26] Torres, P.: Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system. Math. methods appl. Sci. 23, 1139-1143 (2000) · Zbl 0966.34038
[27] P. Torres, M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nach., to appear. · Zbl 1024.34030
[28] Ye, Y.; Wang, X.: Nonlinear differential equations in electron beam focusing theory. Acta math. Appl. sinica 1, 13-41 (1978)
[29] Yujun, D.: Invariance of homotopy and an extention of a theorem by habets-metzen on periodic solutions of Duffing equations. Nonlinear anal. 46, 1123-1132 (2001) · Zbl 1005.34011
[30] Zhang, M.: Periodic solutions of Liénard equations with singular forces of repulsive type. J. math. Anal. appl. 203, 254-269 (1996) · Zbl 0863.34039
[31] Zhang, M.: A relationship between the periodic and the Dirichlet BVPs of singular differential equations. Proc. roy. Soc. edinbourgh sect. A 128, 1099-1114 (1998) · Zbl 0918.34025
[32] Zhang, M.; Li, W. G.: A Lyapunov-type stability criterion using $L{\alpha}$ norms. Proc. amer. Math. soc. 130, No. 11, 3325-3333 (2002) · Zbl 1007.34053