×

Microstates free entropy and cost of equivalence relations. (English) Zbl 1032.37003

Voiculescu’s free entropy dimension is a number \(\delta^{\omega}_{0,k}(u_1 ,...,u_n)\) associated to an \(n\)-tuple of unitaries in a tracial von Neumann algebra (\(\omega\) and \(k\) are certain parameters). The cost \(C(R)\) of an equivalence relation \(R\) is a measure of the least number of generators of the associated groupoid. The cost of a group \(C(G)\) is the infimum of all \(C(R_{\alpha})\) over all free measure preserving actions \(\alpha\) of \(G\) (D. Gaboriau).
Main results of the paper: 1. An invariant of a finite measure preserving \(r\)-discrete measure groupoid \(G\) denoted by \(\delta (G)\) is defined. This invariant is Voiculescu’s free entropy dimension \(\delta\) in the case where \(G\) is a group. In the case where \(G\) is an equivalence relation, \(\delta\) is an invariant for the pair consisting of the von Neumann algebra of \(G\) and the canonical Cartan subalgebra. 2. For a general equivalence relation \(R\) possessing a finite graphing \(\delta (R)\leq C(R)\). 3. For a treeable equivalence relation \(R\) \(\delta (R)=C(R).\) The equality \(\delta (R)=C(R)\) for general \(R\) is unknown. The equality for arbitrary \(R\) would imply that all equivalence relations can be embedded into the ultrapower of the hyperfinite \(II_1\)-factor (problem of A. Connes).

MSC:

37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
46L54 Free probability and free operator algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] P. Biane, “Free Brownian motion, free stochastic calculus and random matrices” in Free Probability Theory (Waterloo, Ontario, 1995) , Fields Inst. Commun. 12 , Amer. Math. Soc., Providence, 1997, 1–19. · Zbl 0873.60056
[2] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289–324. · Zbl 0369.22009
[3] –. –. –. –., Ergodic equivalence relations, cohomology, and von Neumann algebras, II, Trans. Amer. Math. Soc. 234 (1977), 325–359. · Zbl 0369.22010
[4] D. Gaboriau, Mercuriale de groupes et de relations , C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 219–222. · Zbl 1007.28012
[5] –. –. –. –., Coût des relations d’équivalence et des groupes , Invent. Math. 139 (2000), 41–98. · Zbl 0939.28012
[6] –. –. –. –., Sur la (co-)homologie \(L^2\) des actions préservant une mesure, C. R. Acad. Sci. Paris. Sér. I Math. 330 (2000), 365–370. · Zbl 0988.37003
[7] –. –. –. –., Invariants \(\ell^2\) de relations d’équivalence et de groupes , Inst. Hautes Études Sci. Publ. Math. 95 (2002), 93–150. \CMP1 953 191 · Zbl 1022.37002
[8] L. Ge, Applications of free entropy to finite von Neumann algebras. II , Ann. of Math. (2) 147 (1998), 143–157. JSTOR: · Zbl 0924.46050
[9] L. Ge and J. Shen, Free entropy and property \(T\) factors, Proc. Natl. Acad. Sci. USA 97 (2000), 9881–9885. · Zbl 0960.46042
[10] F. Hiai and D. Petz, Properties of free entropy related to polar decomposition , Comm. Math. Phys. 202 (1999), 421–444. · Zbl 0934.46063
[11] K. Petersen, Ergodic Theory , Cambridge Stud. Adv. Math. 2 , Cambridge Univ. Press, Cambridge, 1983.
[12] D. Shlyakhtenko, Some applications of freeness with amalgamation , J. Reine Angew. Math. 500 (1998), 191–212. · Zbl 0926.46046
[13] –. –. –. –., Free Fisher information with respect to a completely positive map and cost of equivalence relations , Comm. Math. Phys. 218 (2001), 133–152. · Zbl 0982.46049
[14] M. Stefan, Indecomposability of free group factors over nonprime subfactors and abelian subalgebras , preprint, 1999.
[15] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory, I, Comm. Math. Phys. 155 (1993), 71–92. · Zbl 0781.60006
[16] –. –. –. –., The analogues of entropy and of Fisher’s information measure in free probability theory, II, Invent. Math. 118 (1994), 411–440. · Zbl 0820.60001
[17] –. –. –. –., “Operations on certain non-commutative operator-valued random variables” in Recent Advances in Operator Algebras (Orléans, France, 1992 ), Astérisque 232 , Soc. Math. France, Montrouge, 1995, 243–275.
[18] –. –. –. –., The analogues of entropy and of Fisher ’s information measure in free probability theory, III: The absence of Cartan subalegras, Geom. Funct. Anal. 6 (1996), 172–199. · Zbl 0856.60012
[19] –. –. –. –., “The analogues of entropy and of Fisher’s information measure in free probability theory, IV: Maximum entropy and freeness” in Free Probability Theory (Waterloo, Ontario, 1995) , Field Inst. Commun. 12 , Amer. Math. Soc., Providence, 1997, 293–302. · Zbl 0960.46040
[20] –. –. –. –., The analogues of entropy and of Fisher ’s information measure in free probabilility theory, V: Noncommutative Hilbert transforms, Invent. Math. 132 (1998), 189–227. · Zbl 0930.46053
[21] –. –. –. –., A strengthened asymptotic freeness result for random matrices with applications to free entropy , Internat. Math. Res. Notices 1998 , no. 1, 41–63. · Zbl 0895.60004
[22] –. –. –. –., The analogues of entropy and of Fisher’s information measure in free probability, VI: Liberation and mutual free information, Adv. Math. 146 (1999), 101–166. · Zbl 0956.46045
[23] –. –. –. –., Free entropy dimension \(\leq 1\) for some generators of property \(T\) factors of type \(\mathrm II_1\) , J. Reine Angew. Math. 514 (1999), 113–118. · Zbl 0959.46047
[24] D. V. Voiculescu, K. Dykema, and A. Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups , CRM Monogr. Ser. 1 , Amer. Math. Soc., Providence, 1992. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.