zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multilinear Calderón-Zygmund theory. (English) Zbl 1032.42020
In this paper the authors consider a systematic treatment of multilinear Calderón-Zygmund operators introduced earlier in the papers of Coifman and Meyer and of {\it M. Lacey} and {\it C. Thiele} [Ann. Math. (2) 146, 693-724 (1997; Zbl 0914.46034); ibid. 149, 475-496 (1999; Zbl 0934.42012)]. The first main result reads as follows: Let $m$-linear operators be $T: [{\cal S}(\bbfR^n)]^m\to{\cal S}'(\bbfR^n)$ for which there is a function $K$ defined away from the diagonal $x= y_1=\cdots= y_m$ in $(\bbfR^n)^{m+1}$ satisfying $$|K(y_0,y_1,\dots, y_m)|\le {c_{n,m}A\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm}}$$ and $$|K(y_0,\dots, y_j,\dots,y_m)- K(y_0,\dots, y_j',\dots, y_m)|\le {c_{n,m}A|y_j- y_j'|^\varepsilon\over (\sum^m_{k,l=0}|y_k- y_l|)^{nm+ \varepsilon}},$$ whenever $0\le j\le m$ and $|y_j- y_j'|\le{1\over 2}\max_{0\le k\le m}|y_j- y_k|$. Let $q_j\in [1,\infty)$ be given numbers with $1/q= \sum^m_{j=1} 1/q_j$. Suppose that $T$ maps $L^{q_1,1}\times\cdots\times L^{q_m,1}$ into $L^{q,\infty}$ if $q> 1$ or $L^1$ if $q= 1$. Then for any $p_j\in [1,\infty]$ such that $1/m\le p< \infty$, $T$ extends to a bounded map from $L^{p_1}\times\cdots\times L^{p_m}$ into $L^p$ if all $p_j> 1$ and into $L^{p,\infty}$ if some $p_j= 1$. If some $p_k= \infty$, $L^{p_k}$ should be replaced by $L^\infty_c$. Moreover, $T$ extends to a bounded map from $L^\infty\times\cdots\times L^\infty$ to BMO. Next, the authors obtain the version of the multilinear T1 theorem by {\it G. David} and {\it J.-L. Journé} [Ann. Math. (2) 120, 371-397 (1984; Zbl 0567.47025)]. It is proved that if $T(e_{\xi_1},\dots, e_{\xi_m})$ and $T^{*j}(e_{\xi_1},\dots, e_{\xi_m})$ $(\xi_1,\dots, \xi_m\in \bbfR^n$, $1\le j\le m)$ are bounded subsets of BMO, then $T$ has a bounded extension from $L^{q_1}\times\cdots\times L^{q_m}$ into $L^q$ if $1< q,q_j<\infty$. Here $j$th transpose $T^{*j}$ of $T$ is defined via $$\langle T^{*j}(f_1,\dots, f_m), h\rangle= \langle T(f_1,\dots, f_{j-1}, h,f_{j+1},\dots, f_m),f_j\rangle$$ for all $f_1,\dots, f_m$, $g$ in ${\cal S}(\bbfR^n)$. This multilinear Calderón-Zygmund theory is applied to obtain some new continuity results for multilinear translation invariant operators, multlinear pseudodifferential operators, and multilinear multipliers.

42B20Singular and oscillatory integrals, several variables
Full Text: DOI
[1] Benedek, A.; Calderón, A.; Panzone, R.: Convolution operators on Banach-space valued functions. Proc. natl. Acad. sci. USA 48, 356-365 (1962) · Zbl 0103.33402
[2] Bourdaud, G.: Une algèbre maximale d’opérateurs pseudodifferentiels. Comm. partial differential equations 13, 1059-1083 (1988) · Zbl 0659.35115
[3] Calderón, A.; Zygmund, A.: On the existence of certain singular integrals. Acta math. 88, 85-139 (1952) · Zbl 0047.10201
[4] Calderón, A.; Zygmund, A.: On singular integrals. Amer. J. Math. 78, 289-309 (1956) · Zbl 0072.11501
[5] Christ, M.; Journé, J-L.: Polynomial growth estimates for multilinear singular integral operators. Acta math. 159, 51-80 (1987) · Zbl 0645.42017
[6] Coifman, R. R.; Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. amer. Math. soc. 212, 315-331 (1975) · Zbl 0324.44005
[7] Coifman, R. R.; Meyer, Y.: Commutateurs d’ intégrales singulières et opérateurs multilinéaires. Ann. inst. Fourier (Grenoble) 28, 177-202 (1978) · Zbl 0368.47031
[8] Coifman, R. R.; Meyer, Y.: Au-delà des opérateurs pseudo-différentiels. Asterisk 57 (1978)
[9] Coifman, R. R.; Meyer, Y.: Non-linear harmonic analysis, operator theory; and PDE. Annals of math. Studies 112 (1986) · Zbl 0623.47052
[10] David, G.; Journé, J. -L.: A boundedness criterion for generalized Calderón-Zygmund operators. Ann. of math. 120, 371-397 (1984) · Zbl 0567.47025
[11] Grafakos, L.; Kalton, N.: Some remarks on multilinear maps and interpolation. Math. ann. 319, 151-180 (2001) · Zbl 0982.46018
[12] L. Grafakos, and, X. Li, Uniform bounds for the bilinear Hilbert transforms, I, submitted for publication. · Zbl 1071.44004
[13] Hörmander, L.: Estimates for translation invariant operators in lp spaces. Acta math. 104, 93-140 (1960) · Zbl 0093.11402
[14] Hörmander, L.: The analysis of linear partial differential operators I. (1990) · Zbl 0712.35001
[15] Janson, S.: On interpolation of multilinear operators. Lecture notes in math. 1302 (1988)
[16] Kenig, C.; Stein, E. M.: Multilinear estimates and fractional integration. Math. res. Lett. 6, 1-15 (1999) · Zbl 0952.42005
[17] Lacey, M. T.; Thiele, C. M.: Lp bounds for the bilinear Hilbert transform, 2<p<\infty. Ann. math. 146, 693-724 (1997) · Zbl 0914.46034
[18] Lacey, M. T.; Thiele, C. M.: On Calderón’s conjecture. Ann. math. 149, 475-496 (1999) · Zbl 0934.42012
[19] X. Li, Uniform bounds for the bilinear Hilbert transforms, II, submitted for publication.
[20] Meyer, Y.; Coifman, R. R.: Wavelets: Calderón-Zygmund and multilinear operators. (1997) · Zbl 0916.42023
[21] Peetre, J.: On convolution operators leaving lp, ${\lambda}$ spaces invariant. Ann. mat. Pura appl. 72, 295-304 (1966) · Zbl 0149.09102
[22] Spanne, S.: Sur l’interpolation entre LES espaces lkp, ${\Phi}$. Ann. scuola norm. Sup. Pisa 20, 625-648 (1966) · Zbl 0203.12403
[23] Stein, E. M.: Singular integrals, harmonic functions, and differentiability properties of functions of several variables. Proc. sympos. Pure math. 10 (1966)
[24] Stein, E. M.: Singular integrals and differentiability properties of functions. (1970) · Zbl 0207.13501
[25] Stein, E. M.: Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals. (1993) · Zbl 0821.42001
[26] Strichartz, R.: A multilinear version of the Marcinkiewicz interpolation theorem. Proc. amer. Math. soc. 21, 441-444 (1969) · Zbl 0175.42603
[27] C. Thiele, A uniform estimate, submitted for publication.