[1] |
A. Fujiwara, P. Algoet, Affine parameterization of completely positive maps on a matrix algebra, preprint; A. Fujiwara, P. Algoet, One-to-one parameterization of quantum channels, Phys. Rev. A 59 (1999) 3290--3294 |

[2] |
G.G. Amosov, A.S. Holevo, R.F. Werner, On some additivity problems in quantum information theory (lanl:quant-ph/0003002, preprint) · Zbl 0983.81004 |

[3] |
Bennett, C. H.; Shor, P. W.: Quantum information theory. IEEE trans. Inform. theory (1998) · Zbl 1099.81501 |

[4] |
Choi, M. -D.: Completely positive linear maps on complex matrices. Linear algebra appl. 10, 285-290 (1975) · Zbl 0327.15018 |

[5] |
Choi, M. -D.: A Schwarz inequality for positive linear maps on C* algebras. Illinois J. Math. 18, 565-574 (1974) · Zbl 0293.46043 |

[6] |
Fuchs, C.: Nonorthogonal quantum states maximize classical information capacity. Phys. rev. Lett. 79, 1162-1165 (1997) |

[7] |
Haag, R.; Kastler, D.: An algebraic approach to quantum field theory. J. math. Phys. 5, 848-861 (1964) · Zbl 0139.46003 |

[8] |
Holevo, A. S.: On the capacity of quantum communication channel. Probl. peredachi inform. 15, No. 4, 3-11 (1979) · Zbl 0317.94003 |

[9] |
Holevo, A. S.: Quantum coding theorems. Russian math. Surveys 53, No. 6, 1295-1331 (1999) · Zbl 1020.94008 |

[10] |
Horn, R. A.; Johnson, C. R.: Matrix analysis. (1985) · Zbl 0576.15001 |

[11] |
Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1991) · Zbl 0729.15001 |

[12] |
M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of protocols of entanglement distillation. Available from: xxx.lanl.gov (quant-ph/9708015, preprint) |

[13] |
King, C.; Ruskai, M. B.: Minimal entropy of states emerging from noisy quantum channels. IEEE trans. Inform. theory 47, 192-209 (2001) · Zbl 1016.94012 |

[14] |
King, C.; Ruskai, M. B.: Capacity of quantum channels using product measurements. J. math. Phys. 42, 87-98 (2001) · Zbl 1013.81003 |

[15] |
Kraus, K.: General state changes in quantum theory. Ann. physics 64, 311-335 (1971) · Zbl 1229.81137 |

[16] |
Kraus, K.: States, effects and operations: fundamental notions of quantum theory. (1983) · Zbl 0545.46049 |

[17] |
Kye, S. -H.: On the convex set of completely positive linear maps in matrix algebra. Math. proc. Cambridge philos. Soc. 122, 45-54 (1997) · Zbl 0881.46041 |

[18] |
Lieb, E.; Ruskai, M. B.: Some operator inequalities of the Schwarz type. Adv. math. 12, 269-273 (1974) · Zbl 0274.46045 |

[19] |
Lindblad, G.: Completely positive maps and entropy inequalities. Commun. math. Phys. 40, 147-151 (1975) · Zbl 0298.46062 |

[20] |
Lloyd, S.: Science. 273, 1073 (1996) |

[21] |
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, MA (in press) · Zbl 1049.81015 |

[22] |
Niu, Griffiths, Two qubit copying machine for economical quantum eavesdropping, quant-ph/9810008 |

[23] |
V.I. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman, Harlow, Wiley, New York, 1986 · Zbl 0614.47006 |

[24] |
Pedersen, G.: C*-algebras and their automorphism groups. (1979) · Zbl 0416.46043 |

[25] |
E. Rieffel, C. Zalka, private communications and unpublished manuscript |

[26] |
B.M. Terhal, I.L. Chuang, D.P. DiVincenzo, M. Grassl, J.A. Smolin, Simulating quantum operations with mixed environments (quant-ph/9806095) |

[27] |
B. Schumacher, M.D. Westmoreland, Optimal signal ensembles. Available form: xxx.lanl.gov (quant-ph/9912122, preprint) |

[28] |
M.B. Ruskai, S. Szarek, E. Werner. Available form: xxx.lanl.gov (quant-ph/0005004, preprint) |