×

zbMATH — the first resource for mathematics

Functional sliced inverse regression analysis. (English) Zbl 1032.62052
Summary: Most of the usual multivariate methods have been extended to the context of functional data analysis. Our contribution concerns the study of sliced inverse regression (SIR) when the response variable is real but the regressor is a function. In the first part, we show how the relevant properties of SIR remain essentially the same in the functional context under suitable conditions. Unfortunately, the estimation procedure used in the multivariate case cannot be directly transposed to the functional one. Then, we propose a solution that overcomes this difficulty and we show the consistency of the estimates of the parameters of the model.

MSC:
62H12 Estimation in multivariate analysis
62J99 Linear inference, regression
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ash R. B., Topics in Stochastic Processes (1975) · Zbl 0317.60014
[2] Bosq D., Nonparametric Functional Estimation and Related Topics pp pp. 509–529– (1991) · Zbl 0737.62032
[3] DOI: 10.1016/S0167-7152(99)00036-X · Zbl 0962.62081 · doi:10.1016/S0167-7152(99)00036-X
[4] Cook R. D., Regression Graphics: Ideas for Studying Regressions Through Graphics (1998) · Zbl 0903.62001
[5] Dauxois J., C. R. Acad. Sci. Paris 327 pp 947– (2001) · Zbl 0996.62035 · doi:10.1016/S0764-4442(01)02163-2
[6] Dauxois J. Pousse A. (1976) Les analyses factorielles en calcul des probabilités et en statistique: essai d’étude synthétiqueThèse d’EtatUniversité Toulouse III
[7] DOI: 10.1007/s001800200126 · Zbl 1037.62032 · doi:10.1007/s001800200126
[8] DOI: 10.2307/2669610 · Zbl 0908.62049 · doi:10.2307/2669610
[9] Ferré L. Villa N. (2003) Multi-layer neural network with functional inputsTechnical Report
[10] Ferré L. Yao A. F. (2003) Smoothed functional inverse regressionTechnical Report
[11] Fortet R., Vecteurs, fonctions et distributions aléatoires dans les espaces de Hilbert (1995)
[12] DOI: 10.2307/1269658 · doi:10.2307/1269658
[13] DOI: 10.1214/aos/1176348669 · Zbl 0821.62019 · doi:10.1214/aos/1176348669
[14] DOI: 10.1214/aos/1018031213 · Zbl 0951.62034 · doi:10.1214/aos/1018031213
[15] DOI: 10.2307/1267351 · Zbl 0202.17205 · doi:10.2307/1267351
[16] Ito K., Osaka J. Maths. 5 pp 35– (1968)
[17] DOI: 10.1093/biomet/87.3.587 · Zbl 0962.62056 · doi:10.1093/biomet/87.3.587
[18] Leurgans S. E., J. R. Statist. Soc., B 55 pp 725– (1993)
[19] DOI: 10.2307/2290563 · Zbl 0742.62044 · doi:10.2307/2290563
[20] DOI: 10.2307/2290640 · Zbl 0765.62003 · doi:10.2307/2290640
[21] Marx B. D., Statistical Modeling. Proceedings of the 11th International Workshop on Statistical Modelling (1996)
[22] DOI: 10.2307/2283149 · doi:10.2307/2283149
[23] Ramsay J. O., Functional Data Analysis (1997) · Zbl 0882.62002 · doi:10.1007/978-1-4757-7107-7
[24] DOI: 10.2307/2291210 · Zbl 0791.62069 · doi:10.2307/2291210
[25] Wold H., Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett (1975)
[26] Zhu L. X., Ann. Statist. 3 pp 1053– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.