zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonparametric estimation of American options’ exercise boundaries and call prices. (English) Zbl 1032.91591
Summary: Unlike European-type derivative securities, there are no simple analytic valuation formulas for finite-lived American options, even when the underlying asset price has constant volatility. The early exercise feature considerably complicates the valuation of American contracts. The strategy taken in this paper is to rely on nonparametric statistical methods using market data to estimate the call prices and the exercise boundaries. A comparison is made with parametric constant volatility model-based prices and exercise boundaries. The paper focuses on assessing the adequacy of conventional formulas by comparing them to nonparametric estimates. We use daily market option prices and exercise data on the S&P100 contract, the most actively traded American option contract. We find large discrepancies between the parametric and nonparametric call prices and exercise boundaries. We also find remarkable similarities of the nonparametric estimates before and after the crash of October 1987.

91B24Price theory and market structure
Full Text: DOI
[1] Abadir, K.M., Rockinger, M., 1997. Density-embedding functions. Discussion Paper, 97/16, University of York. · Zbl 1130.60303
[2] Abken, P., Madan, D., Ramamurtie, S., 1996. Estimation of risk-neutral and statistical densities by hermite polynomial approximations: with an application to Eurodollar futures options. Discussion Paper, Federal Reserve Bank of Atlanta.
[3] Aı\ddot{}t-Sahalia, Y., 1993. Nonparametric functional estimation with applications to financial models. Ph.D. Dissertation, M.I.T.
[4] Aı\ddot{}t-Sahalia, Y.: Nonparametric pricing of interest rate derivative securities. Econometrica 64, 527-560 (1996) · Zbl 0844.62094
[5] Aı\ddot{}t-Sahalia, Y., Lo, A.W., 1998. Nonparametric estimation of state-price densities implicit in financial asset prices. Journal of Finance 53, 499--547.
[6] Altman, N.S., 1987. Smoothing data with correlated errors. Technical Report 280, Department of Statistics, Stanford University.
[7] Altman, N. S.: Kernel smoothing of data with correlated errors. Journal of the American statistical association 85, 749-759 (1990)
[8] Andrews, D. K.: Asymptotic optimality of generalized CL, cross-validation, and generalized cross-validation in regression with heteroskedastic errors. Journal of econometrics 47, 359-377 (1991) · Zbl 0734.62069
[9] Barles, G.; Burdeau, J.; Romano, M.; Samsoen, N.: Critical stock price near expiration. Mathematical finance 5, 77-95 (1995) · Zbl 0866.90029
[10] Barone-Adesi, G.; Whaley, R. E.: Efficient analytic approximation of American option values. Journal of finance 42, 301-320 (1987)
[11] Bates, D. S.: The crash of ’87 -- was it expected? the evidence from options markets. Journal of finance 46, 1009-1044 (1991)
[12] Bensoussan, A.: On the theory of option pricing. Acta applicandae mathematicae 2, 139-158 (1984) · Zbl 0554.90019
[13] Bodurtha, J. N.; Courtadon, G. R.: Efficiency tests of the foreign currency options market. Journal of finance 42, 151-162 (1986)
[14] Bossaerts, P., 1988. Simulation estimators of optimal early exercise. Working paper, Graduate School of Industrial Administration, Carnegie Mellon University.
[15] Boyle, P.: A lattice framework for option pricing with two state variables. Journal of financial and quantitative analysis 23, 1-12 (1988)
[16] Breen, R.: The accelerated binomial option pricing model. Journal of financial and quantitative analysis 26, 153-164 (1991)
[17] Brennan, M. J.; Schwartz, E.: The valuation of American put options. Journal of finance 32, 449-462 (1977)
[18] Broadie, M.; Detemple, J.: American option valuation: new bounds, approximations, and a comparison of existing methods. Review of financial studies 9, 1211-1250 (1996)
[19] Broadie, M., Detemple, J., Ghysels, E., Torrès, O., 1995. American options with stochastic volatility: a nonparametric investigation. Discussion paper, CIRANO, Montréal. · Zbl 1122.91323
[20] Broadie, M., Detemple, J., Ghysels, E., Torrès, O., 2000. American options with stochastic dividends and volatility: a nonparametric investigation. Journal of Econometrics, 94, 53--92. · Zbl 1122.91323
[21] Büttler, H. -J.; Waldvogel, J.: Pricing callable bonds by means of Green’s function. Mathematical finance 6, 53-88 (1996) · Zbl 0919.90006
[22] Carr, P.; Jarrow, R.; Myneni, R.: Alternative characterizations of American put options. Mathematical finance 2, 87-106 (1992) · Zbl 0900.90004
[23] Carr, P., Faguet, D., 1994. Fast accurate valuation of American options. Working paper, Cornell University.
[24] Chernov, M., Ghysels, E., 1998. What data should be used to price options? Discussion paper CIRANO, Montreal.
[25] Cox, J. C.; Ross, S. A.; Rubinstein, M.: Option pricing: a simplified approach. Journal of financial economics 7, 229-263 (1979) · Zbl 1131.91333
[26] Craven, P.; Wahba, G.: Smoothing noisy data with spline functions. Numerical mathematics 31, 377-403 (1979) · Zbl 0377.65007
[27] de Matos, J.A., 1994. MSM estimators of American option pricing models. Ph.D. Dissertation, INSEAD, Fontainebleau.
[28] Diz, F.; Finucane, T. J.: The rationality of early exercise decisions: evidence from the S&P100 index options markets. Review of financial studies 6, 765-797 (1993)
[29] Duffie, D.; Singleton, K. J.: Simulated moments estimation of Markov models of asset prices. Econometrica 61, 929-952 (1993) · Zbl 0783.62099
[30] Dunn, K. B.; Eades, K. M.: Voluntary conversion of convertible securities and the optimal call strategy. Journal of financial economics 23, 273-302 (1989)
[31] El Karoui, N.; Karatzas, I.: A new approach to the Skorohod problem and its applications. Stochastics and stochastics reports 34, 57-82 (1991) · Zbl 0735.60046
[32] Eubank, R. L.: Spline smoothing and nonparametric regression. (1988) · Zbl 0702.62036
[33] French, D. W.; Maberly, E. D.: Early exercise of American index options. Journal of financial research 15, 127-137 (1992)
[34] Gallant, R., Tauchen, G., 1996. Which moments to match? Econometric Theory 12, 657--681.
[35] Garcia, R., Renault, E., 1996. Risk aversion, intertemporal substitution and option pricing. Discussion paper, CIRANO, Montréal and GREMAQ, Université de Toulouse I.
[36] Gay, G. D.; Kolb, R. W.; Yung, K.: Trader rationality in the exercise of futures options. Journal of financial economics 23, 339-361 (1989)
[37] Geske, R.: A note on an analytic formula for unprotected American call options on stocks with known dividends. Journal of financial economics 7, 375-380 (1979)
[38] Geske, R.; Johnson, H. E.: The American put options valued analytically. The journal of finance 39, 1511-1524 (1984)
[39] Ghysels, E., Harvey, A., Renault, E., 1996. Stochastic volatility. In: Maddala et al. (Eds.), Handbook of Statistics, Statistical Methods in Finance, vol. 14. North-Holland, Amsterdam, forthcoming.
[40] Gouriéroux, C., Monfort, A., 1995. Simulation Based Econometric Methods. CORE Lecture Series. Louvain-la-Neuve.
[41] Gouriéroux, C.; Monfort, A.; Renault, E.: Indirect inference. Journal of applied econometrics 8, S85-S118 (1993) · Zbl 05501088
[42] Gouriéroux, C., Monfort, A., Tenreiro, C., 1994. Kernel M-estimators: nonparametric diagnostics for structural models. Working Paper 9405, CEPREMAP, Paris.
[43] Györfi, L., Härdle, W., Sarda, P., Vieu, P., 1989. In: Berger, J., et al. (Eds.), Nonparametric Curve Estimation from Time Series., Lecture Notes in Statistics, vol. 60. Springer, Heidelberg. · Zbl 0697.62038
[44] Härdle, W.: Applied nonparametric regression. Econometric society monographs. (1990)
[45] Härdle, W., Linton, O., 1994. Applied nonparametric methods. In: Engle, R.F., McFadden, D.L. (Eds.), Handbook of Econometrics, vol. 4. Elsevier, Amsterdam (Chapter 38).
[46] Härdle, W.; Vieu, P.: Kernel regression smoothing of time series. Journal of time series analysis 13, 209-232 (1992) · Zbl 0759.62016
[47] Harrison, J. M.; Kreps, D. M.: Martingales and arbitrage in multiperiod securities markets. Journal of economic theory 20, 381-408 (1979) · Zbl 0431.90019
[48] Harvey, C. R.; Whaley, R. E.: Dividends and S&P100 index option valuation. Journal of futures markets 12, 123-137 (1992)
[49] Hastie, T. J.; Tibshirani, R. J.: Generalized additive models. (1990) · Zbl 0747.62061
[50] Horowitz, J. L.: Semiparametric estimation of a work-trip mode choice model. Journal of econometrics 58, 49-70 (1993) · Zbl 0772.62066
[51] Huang, J.; Subrahmanyam, M.; Yu, G.: Pricing and hedging American options: a recursive integration method. Review of financial studies 9, 277-300 (1996)
[52] Hutchinson, J. M.; Lo, A. W.; Poggio, T.: A nonparametric approach to pricing and hedging derivative securities via learning networks. Journal of finance 49, 851-889 (1994)
[53] Ingersoll, J.: An examination of corporate call policies on convertible securities. The journal of finance 32, 463-478 (1977)
[54] Jacka, S. D.: Optimal stopping and the American put. Mathematical finance 1, 1-14 (1991) · Zbl 0900.90109
[55] Jackwerth, J. C.; Rubinstein, M.: Recovering probability distributions from option prices. Journal of finance 51, 1611-1631 (1996)
[56] Karatzas, I.: On the pricing of American options. Applied mathematics and optimization 17, 37-60 (1988) · Zbl 0699.90010
[57] Kim, I. J.: The analytic valuation of American options. The review of financial studies 3, 547-572 (1990)
[58] Künsch, H. R.: The jacknife and the bootstrap for general stationary observations. Annals of statistics 17, 1217-1241 (1989) · Zbl 0684.62035
[59] Kuske, R.; Keller, J.: Optimal excercise boundary for American put options. Applied mathematical finance 5, 107-116 (1998) · Zbl 1009.91025
[60] Lehmann, E. L.: Theory of point estimation. (1983) · Zbl 0522.62020
[61] Liu, R. Y.; Singh, K.: Moving blocks jacknife and bootstrap capture of weak dependence. Exploring the limits of bootstrap (1992)
[62] Mckean, H. P.: Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics. Industrial management review 6, 32-39 (1965)
[63] Merton, R. C.: Theory of rational option pricing. Bell journal of economics 4, 141-183 (1973) · Zbl 1257.91043
[64] Myneni, R.: The pricing of the American option. Annals of applied probability 2, 1-23 (1992) · Zbl 0753.60040
[65] OEX-S&P100 Index Options, 1995. Chicago Board Options Exchange, Inc.
[66] Overdahl, J. A.: The early exercise of options on treasury Bond futures. Journal of financial and quantitative analysis 23, 437-449 (1988)
[67] Pedersen, A.R., 1995a. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Working paper, Department of Theoretical Statistics, University of Aarhus. · Zbl 0827.62087
[68] Pedersen, A.R., 1995b. Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Working paper, Department of Theoretical Statistics, University of Aarhus. · Zbl 0839.62079
[69] Renault, E., 1996. Econometric models of option pricing errors, Discussion paper, GREMAQ, Université de Toulouse I.
[70] Robinson, P. M.: Nonparametric estimators for time series. Journal of time series analysis 4, 185-207 (1983) · Zbl 0544.62082
[71] Rutkowski, M.: The early exercise premium representation of foreign market American options. Mathematical finance 4, 313-325 (1994) · Zbl 0884.90047
[72] Samuelson, P. A.: Rational theory of warrant pricing. Industrial management review 6, 13-31 (1965)
[73] Schuster, E. F.: Joint asymptotic distribution of the estimated regression function at a finite number of distinct points. Annals of mathematical statistics 43, 84-88 (1972) · Zbl 0248.62027
[74] Scott, D. W.: Multivariate density estimation: theory, practice and visualization. (1992) · Zbl 0850.62006
[75] Selby, M. J. P.; Hodges, S. D.: On the evaluation of compound options. Management science 33, 347-355 (1987)
[76] Silverman, B. W.: Spline smoothing: the equivalent variable kernel method. Annals of statistics 12, 898-916 (1984) · Zbl 0547.62024
[77] Silverman, B. W.: Density estimation for statistics and data analysis. (1986) · Zbl 0617.62042
[78] Singh, R. S.; Ullah, A.: Nonparametric time-series estimation of joint DGP, conditional DGP, and vector autoregressions. Econometric theory 1, 27-52 (1985)
[79] Stutzer, M.: A simple nonparametric approach to derivative security valuation. Journal of finance 51, 1633-1652 (1996)
[80] Van Moerbeke, P.: On optimal stopping and free boundary problems. Archive for rational mechanics and analysis 60, 101-148 (1976) · Zbl 0336.35047
[81] Wahba, G., 1990. Spline Models For Observational Data. Conference Board of Mathematical Sciences -- National Science Foundation (CBMS -- NSF) Regional Conference Series, vol. 59, Society for Industrial and Applied Mathematics (SIAM), Philadelphia. · Zbl 0813.62001
[82] Whaley, R. E.: On the valuation of American call options on stocks with known dividends. Journal of financial economics 9, 207-211 (1981)
[83] Yu, G., 1993. Essays on the valuation of American options. Ph.D. Dissertation, New York University.
[84] Zivney, T. L.: The value of early exercise in option prices: an empirical investigation. Journal of financial and quantitative analysis 26, 129-138 (1991)