zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Lie algebraic approach to Novikov algebras. (English) Zbl 1033.17001
Summary: Novikov algebras were introduced in connection with Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. The commutator of a Novikov algebra is a Lie algebra. Thus it is useful to relate the study of Novikov algebras to the theory of Lie algebras. In this paper, we realize Novikov algebras through a Lie algebraic approach. Such a realization could be important in physics and geometry. We find that all transitive Novikov algebras in dimension $\le 3$ can be realized as the Novikov algebras obtained through Lie algebras and their compatible linear (global) deformations.

17A30Nonassociative algebras satisfying other identities
55N35Other homology theories (algebraic topology)
55Q70Homotopy groups of special types
Full Text: DOI
[1] Gel’fand, I. M.; Diki, L. A.: Asymptotic behavior of the resolvent of Sturm--Liouville equations and the Lie algebra of the Korteweg-de Vries equations. Russian math. Surv. 30, 77-113 (1975)
[2] Gel’fand, I. M.; Diki, L. A.: A Lie algebra structure in a formal variational calculation. Funct. anal. Appl. 10, 16-22 (1976)
[3] Gel’fand, I. M.; Dorfman, I. Ya.: Hamiltonian operators and algebraic structures related to them. Funct. anal. Appl. 13, 248-262 (1979)
[4] Dubrovin, B. A.; Novikov, S. P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the bogolyubov--Whitham averaging method. Soviet math. Dokl. 27, 665-669 (1983) · Zbl 0553.35011
[5] Dubrovin, B. A.; Novikov, S. P.: On Poisson brackets of hydrodynamic type. Soviet math. Dokl. 30, 651-654 (1984) · Zbl 0591.58012
[6] Balinskii, A. A.; Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet math. Dokl. 32, 228-231 (1985) · Zbl 0606.58018
[7] Xu, X.: Hamiltonian operators and associative algebras with a derivation. Lett. math. Phys. 33, 1-6 (1995) · Zbl 0837.16034
[8] Xu, X.: Hamiltonian superoperators. J. phys. A 28, 1681-1698 (1995) · Zbl 0852.58043
[9] Osborn, J. M.: Novikov algebras. Nova J. Algebra geom. 1, 1-14 (1992) · Zbl 0876.17005
[10] Osborn, J. M.: Simple Novikov algebras with an idempotent. Commun. algebra 20, 2729-2753 (1992) · Zbl 0772.17001
[11] Osborn, J. M.: Infinite-dimensional Novikov algebras of characteristic 0. J. algebra 167, 146-167 (1994) · Zbl 0814.17002
[12] Xu, X.: On simple Novikov algebras and their irreducible modules. J. algebra 185, 905-934 (1996) · Zbl 0863.17003
[13] Xu, X.: Novikov--Poisson algebras. J. algebra 190, 253-279 (1997) · Zbl 0872.17030
[14] Kim, H.: Complete left-invariant affine structures on nilpotent Lie groups. J. diff. Geom. 24, 373-394 (1986) · Zbl 0591.53045
[15] Vinberg, E. B.: Convex homogeneous cones. Trans. Moscow math. Soc. no. 12, 340-403 (1963) · Zbl 0138.43301
[16] Bai, C. M.; Meng, D. J.: The structure of bi-symmetric algebras and their sub-adjacent Lie algebras. Commun. algebra 28, 2717-2734 (2000) · Zbl 0966.17001
[17] Burde, D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscipta math. 95, 397-411 (1998) · Zbl 0907.17008
[18] Zel’manov, E. I.: On a class of local translation invariant Lie algebras. Soviet math. Dokl. 35, 216-218 (1987)
[19] Bai, C. M.; Meng, D. J.: The classification of Novikov algebras in low dimensions. J. phys. A 34, 1581-1594 (2001) · Zbl 1001.17002
[20] Bai, C. M.; Meng, D. J.: On the realization of transitive Novikov algebras. J. phys. A 34, 3363-3372 (2001) · Zbl 0985.17001
[21] Bai, C. M.; Meng, D. J.: The realizations of non-transitive Novikov algebras. J. phys. A 34, 6435-6442 (2001) · Zbl 1003.17002
[22] Filipov, V. T.: A class of simple nonassociative algebras. Mat. zametki 45, 101-105 (1989) · Zbl 0659.17003
[23] Bai, C. M.; Meng, D. J.: Addendum: the classification of Novikov algebras in low dimensions: invariant bilinear forms. J. phys. A 34, 8193-8197 (2001) · Zbl 1013.17001
[24] C.M. Bai, D.J. Meng, The derivations of Novikov algebras, Nankai, preprint. · Zbl 1112.17002
[25] Perea, A. M.: Flat left-invariant connections adapted to the automorphism structure of a Lie group. J. diff. Geom. 16, 445-474 (1981) · Zbl 0486.53026
[26] C.M. Bai, D.J. Meng, On the Novikov algebra structures adapted to the automorphism structure of a Lie group, J. Geom. Phys., in press. · Zbl 1033.17002
[27] Bai, C. M.; Meng, D. J.: Transitive Novikov algebras on four-dimensional nilpotent Lie algebras. Int. J. Theor. phys. 40, 1761-1768 (2001) · Zbl 1001.17001