×

zbMATH — the first resource for mathematics

Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. (English) Zbl 1033.35025
This paper deals with the strong unique continuation problem for second-order elliptic equations with nonsmooth coefficients \[ \sum^n_{i,j=1} \partial_i(g^{ij}(x)\partial_ju)= Vu+ W_1\nabla u+\nabla (W_2 u)\quad\text{in }\mathbb{R}^n. \] First, the authors state that the strong unique continuation result is a standard consequence of certain estimates of Carleman type. Second, they prove the Carleman estimates. Third, the authors use a perturbation argument to transfer these estimates to variable coefficient operators and more general exponential weights. Finally, the global construction of the weights, as well as the global Carleman estimates are explained.

MSC:
35J15 Second-order elliptic equations
35B60 Continuation and prolongation of solutions to PDEs
35R05 PDEs with low regular coefficients and/or low regular data
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Forte unicité pour des inégalités différentielles. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. II (Paris, 1979/1980), 1-10, 385. Research Notes in Mathematics, 60. Pitman, Boston-London, 1982.
[2] Aronszajn, J Math Pures Appl (9) 36 pp 235– (1957)
[3] Aronszajn, Ark Mat 4 pp 417– (1962) · Zbl 0107.07803
[4] Bahouri, Ann Inst Fourier (Grenoble) 36 pp 137– (1986) · Zbl 0603.35008
[5] Baouendi, Ann Inst Fourier (Grenoble) 43 pp 1311– (1993) · Zbl 0804.35029
[6] An Optimal Carleman-type inequality for the Dirac operator. Stochastic processes and their applications in mathematics and physics (Bielefeld, 1985), 71-94. Mathematics and Its Applications, 61. Kluwer, Dordrecht, 1990.
[7] Carleman, Ark Mat Astr Fys 26 pp 9– (1939)
[8] Chanillo, Trans Amer Math Soc 318 pp 275– (1990)
[9] Colombini, Comm Partial Differential Equations 24 pp 1079– (1999) · Zbl 0928.35041
[10] Dehman, J Math Pures Appl (9) 72 pp 475– (1993)
[11] Fabre, Comm Partial Differential Equations 21 pp 573– (1996) · Zbl 0849.35098
[12] Garofalo, Indiana Univ Math J 35 pp 245– (1986) · Zbl 0678.35015
[13] Garofalo, Comm Pure Appl Math 40 pp 347– (1987) · Zbl 0674.35007
[14] Garofalo, Ann Inst Fourier (Grenoble) 44 pp 129– (1994) · Zbl 0791.35017
[15] Jerison, Ann of Math (2) 121 pp 463– (1985) · Zbl 0593.35119
[16] Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. Harmonic analysis and partial differential equations (El Escorial, 1987), 69-90. Lecture Notes in Mathematics, 1384. Springer, Berlin-New York, 1989.
[17] ; A counterexample in unique continuation. Preprint. · Zbl 0973.35064
[18] Kurata, Comm Partial Differential Equations 18 pp 1161– (1993) · Zbl 0788.35015
[19] Mandache, Lett Math Phys 31 pp 85– (1994) · Zbl 0817.47041
[20] Miller, Bull Am Math Soc 79 pp 350– (1973) · Zbl 0271.35035
[21] Pan, Comm Partial Differential Equations 17 pp 953– (1992) · Zbl 0810.35005
[22] Unique continuation theorems for solutions of partial differential equations. Proc. Internat. Congr. Mathematicians (Stockholm, 1962), 397-402. Inst Mittag-Leffler, Djursholm, 1963.
[23] Regbaoui, Comm Partial Differential Equations 24 pp 1891– (1999) · Zbl 0934.35125
[24] Regbaoui, Comm Anal Geom 7 pp 303– (1999) · Zbl 0927.35136
[25] Sawyer, Ann Inst Fourier (Grenoble) 34 pp 189– (1984) · Zbl 0535.35007
[26] Sogge, Amer J Math 112 pp 943– (1990) · Zbl 0734.35012
[27] Taubes, Comm Anal Geom 2 pp 35– (1994) · Zbl 0838.53028
[28] Wang, Duke Math J 74 pp 107– (1994) · Zbl 0809.35018
[29] Wolff, Proc Amer Math Soc 114 pp 351– (1992)
[30] Wolff, Geom Funct Anal 2 pp 225– (1992) · Zbl 0780.35015
[31] Recent work on sharp estimates in second order elliptic unique continuation problems. Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), 99-128. Studies in Advanced Mathematics, CRC, Boca Raton, Fla. 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.