Global existence for a new periodic integrable equation. (English) Zbl 1033.35121

Summary: We establish the local well-posedness for a new periodic integrable equation \[ \begin{alignedat}{2} &u_t- u_{txx}+ 4uu_x= 3u_x u_{xx}+ uu_{xxx},\quad &&t> 0,\;x\in\mathbb R,\\ & u(0,x)= u_0(x),\quad &&x\in\mathbb R,\\ & u(t, x+1)= u(t,x),\quad &&t\geq 0,\;x\in\mathbb{R}.\end{alignedat} \] We show that the equation has classical solutions that blowup in finite time as well as classical solutions which exist globally in time.


35Q58 Other completely integrable PDE (MSC2000)
35B40 Asymptotic behavior of solutions to PDEs
35B10 Periodic solutions to PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI


[1] Bona, J. L.; Smith, R., The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London, 278, 555-601 (1975) · Zbl 0306.35027
[2] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[3] Constantin, A., The Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations, 141, 218-235 (1997) · Zbl 0889.35022
[4] Constantin, A.; Escher, J., Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475-504 (1998) · Zbl 0934.35153
[5] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243 (1998) · Zbl 0923.76025
[6] Constantin, A.; Escher, J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233, 79-91 (2000) · Zbl 0954.35136
[7] Constantin, A.; Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35, R51-R79 (2002) · Zbl 1039.37068
[8] Constantin, A.; McKean, H. P., A shallow water equation on the circle, Comm. Pure Appl. Math., 52, 949-982 (1999) · Zbl 0940.35177
[10] Degasperis, A.; Procesi, M., Asymptotic integrability, (Degasperis, A.; Gaeta, G., Symmetry and Perturbation Theory (1999), World Scientific), 23-37 · Zbl 0963.35167
[12] Gesztesy, F.; Holden, H., Soliton Equations and their Algebro-Geometric Solutions (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1061.37056
[13] Fokas, A.; Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114
[14] Kato, T., Quasi-linear equations of evolution, with applications to partial differential equations, (Spectral Theory and Differential Equations. Spectral Theory and Differential Equations, Lecture Notes in Math., 448 (1975), Springer-Verlag: Springer-Verlag Berlin), 25-70
[15] Kato, T., On the Korteweg-de Vries equation, Manuscripta Math., 28, 89-99 (1979) · Zbl 0415.35070
[16] Kenig, C.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 527-620 (1993) · Zbl 0808.35128
[17] McKean, H. P., Integrable systems and algebraic curves, (Global Aanlysis. Global Aanlysis, Lecture Notes in Math., 755 (1979), Springer-Verlag), 83-200 · Zbl 0449.35080
[18] Misiolek, G., A shallow water equation as a geoderic flows on the Bott-Virasoro group, J. Geom. Phys., 24, 203-208 (1998) · Zbl 0901.58022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.