Greenleaf, Allan; Seeger, Andreas Oscillatory integral operators with low-order degeneracies. (English) Zbl 1033.35164 Duke Math. J. 112, No. 3, 397-420 (2002). This paper provides sharp estimates for the norm of oscillatory integrals of the form \[ T_\lambda f(x)= \int e^{i\lambda\Phi(x,z)}\sigma(x, z)\,dz, \] as bounded operators on \(L^2\), where \(\Phi\) is a \(C^\infty\) real-valued function defined on \(\Omega_L\times \Omega_R\), \(\Omega_L\) and \(\Omega_L\) being open sets in \(\mathbb{R}^d\), \(\sigma\in C^\infty_0\) \((\Omega_L\times\Omega_R)\) and \(\lambda\) is a positive parameter. The interest of the authors is in describing how the norm \(\| T_\lambda\|_{L^2\to L^2}\) decays as \(\lambda\to \infty\), under special assumptions on \(\Phi\). In general, this decay is determined by the properties of the canonical relation \[ {\mathcal C}= \{(x,\Phi_x, z-\Phi_z): (x,z)\in \Omega_L\times \Omega_R\} \] as a subset of the product of the cotangent spaces \(T^*\Omega_L\times T^*\Omega_R\). More specifically, it is determined by the properties of the projections \(\pi_L:{\mathcal C}\to T^*\Omega_L\) and \(\pi_R:{\mathcal C}\to T^*\Omega_R\) defined as \[ \pi_L: (x,z)\to (x,\Phi_x(x,z)),\quad \pi_R:(x,z)\to (x,-\Phi_z(x,z)). \] Here, \(\Phi_x\) and \(\Phi_z\) denote the partial gradients. When \(\text{det\,}\Phi_{xz}(x,z)\) is not zero, that is to say when \({\mathcal C}\) is locally the graph of a canonical transformation then \(\| T_\lambda\|_{L^2\to L^2}= O(\lambda^{-d/2})\) [L. Hörmander, Acta Math. 127, 79–183 (1971; Zbl 0212.46601) and Ark Mat. 11, 1–11 (1973; Zbl 0254.42010)]. If the projections have singularities, the decay in \(\lambda\) is less. The authors provide a careful review of known results for various types of singularities. They state and prove \(L^2\)-estimates under mixed conditions on the singularities of the projections. In particular, if the only singularities of one of the projections are the so-called Whitney folds, Whitney cups or swallowtails, \[ \| T_\lambda\|_{L^2\to L^2}= O(\lambda^{-(d- 1)/2- 1/8})\quad\text{for }\lambda\geq 1. \] If the only singularities of both projections are Whitney folds or Whitney cups, \[ \| T_\lambda\|_{L^2\to L^2}= O(\lambda^{-(d- 1)/2- 1/4})\quad\text{for }\lambda\geq 1. \] The authors also state and prove \(L^2\)-estimates under other mixed conditions on the projections. As a corollary to these results, they obtain sharp \(L^2\)-Sobolev estimates for Fourier integral operators. The proofs of these results are based on some delicate decompositions and estimates. The paper ends with a comprehensive list of references. Reviewer: Josefina Alvarez (Las Cruces) Cited in 6 Documents MSC: 35S30 Fourier integral operators applied to PDEs 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 47G10 Integral operators 58J40 Pseudodifferential and Fourier integral operators on manifolds Keywords:sharp estimates for the norm of oscillatory integrals; singularities; Whitney folds; Whitney cups; swallowtails; \(L^2\)-Sobolev estimates for Fourier integral operators Citations:Zbl 0212.46601; Zbl 0254.42010 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] A.-P. Calderón and R. Vaillancourt, A class of bounded pseudo-differential operators , Proc. Nat. Acad. Sci. USA 69 (1972), 1185–1187. · Zbl 0244.35074 · doi:10.1073/pnas.69.5.1185 [2] A. Comech, “Integral operators with singular canonical relations” in Spectral Theory, Microlocal Analysis, Singular Manifolds , Math. Top. 14 , Akademie, Berlin, 1997, 200–248. · Zbl 0929.43001 [3] –. –. –. –., Optimal regularity of Fourier integral operators with one-sided folds , Comm. Partial Differential Equations 24 (1999), 1263–1281. · Zbl 0933.35202 · doi:10.1080/03605309908821465 [4] A. Comech and S. Cuccagna, Integral operators with two-sided cusp singularities , Internat. Math. Res. Notices 2000 , 1225–1242. · Zbl 0973.35206 · doi:10.1155/S1073792800000611 [5] S. Cuccagna, \(L^2\) estimates for averaging operators along curves with two-sided \(k\)-fold singularities , Duke Math. J. 89 (1997), 203–216. · Zbl 0908.47050 · doi:10.1215/S0012-7094-97-08910-9 [6] I. M. Gelfand and M. I. Graev, Line complexes in the space \(\mathbb C^n\) , Funct. Anal. Appl. 2 (1968), 219–229. · Zbl 0179.50903 [7] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities , Grad. Texts in Math. 14 , Springer, New York, 1973. · Zbl 0294.58004 [8] A. Greenleaf and A. Seeger, Fourier integral operators with fold singularities , J. Reine Angew. Math. 455 (1994), 35–56. · Zbl 0799.42008 · doi:10.1515/crll.1994.455.35 [9] –. –. –. –., Fourier integral operators with cusp singularities , Amer. J. Math. 120 (1998), 1077–1119. · Zbl 0919.35153 · doi:10.1353/ajm.1998.0036 [10] –. –. –. –., On oscillatory integral operators with folding canonical relations , Studia Math. 132 (1999), 125–139. · Zbl 0922.35194 [11] A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform , Duke Math. J. 58 (1989), 205–240. · Zbl 0668.44004 · doi:10.1215/S0012-7094-89-05811-0 [12] –. –. –. –., Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, I , Ann. Inst. Fourier (Grenoble) 40 (1990), 443–466. ; II , Duke Math. J. 64 (1991), 415–444. Mathematical Reviews (MathSciNet): [13] –. –. –. –., Estimates for singular Radon transforms and pseudodifferential operators with singular symbols , J. Funct. Anal. 89 (1990), 202–232. · Zbl 0717.44001 · doi:10.1016/0022-1236(90)90011-9 [14] V. Guillemin, Cosmology in \((2+1)\)-dimensions, Cyclic Models, and Deformations of \(M_2,1\) , Ann. of Math. Stud. 121 , Princeton Univ. Press, Princeton, 1989. · Zbl 0697.53003 [15] L. Hörmander, Fourier integral operators, I , Acta Math. 127 (1971), 79–183. · Zbl 0212.46601 · doi:10.1007/BF02392052 [16] –. –. –. –., Oscillatory integrals and multipliers on \(F\!L^p\) , Ark. Mat. 11 (1973), 1–11. · Zbl 0254.42010 · doi:10.1007/BF02388505 [17] R. Melrose and M. Taylor, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , Adv. Math. 55 (1985), 242–315. · Zbl 0591.58034 · doi:10.1016/0001-8708(85)90093-3 [18] B. Morin, Formes canoniques des singularités d’une application différentiable , C. R. Acad. Sci. Paris 260 (1965), 5662–5665. · Zbl 0199.27102 [19] Y. Pan and C. D. Sogge, Oscillatory integrals associated to folding canonical relations , Colloq. Math. 60 /61 (1990), 413–419. · Zbl 0746.58076 [20] D. H. Phong and E. M. Stein, Radon transforms and torsion , Internat. Math. Res. Notices 1991 , 49–60. · Zbl 0761.46033 · doi:10.1155/S1073792891000077 [21] –. –. –. –., The Newton polyhedron and oscillatory integral operators , Acta Math. 179 (1997), 105–152. · Zbl 0896.35147 · doi:10.1007/BF02392721 [22] V. Rychkov, Sharp \(L^2\) bounds for oscillatory integral operators with \(C^\infty\) phases , Math. Z. 236 (2001), 461–489. \CMP1 821 301 · Zbl 0998.42002 · doi:10.1007/s002090000187 [23] A. Seeger, Degenerate Fourier integral operators in the plane , Duke Math. J. 71 (1993), 685–745. · Zbl 0806.35191 · doi:10.1215/S0012-7094-93-07127-X [24] –. –. –. –., Radon transforms and finite type conditions , J. Amer. Math. Soc. 11 (1998), 869–897. JSTOR: · Zbl 0907.35147 · doi:10.1090/S0894-0347-98-00280-X [25] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals , Princeton Math. Ser. 43 , Princeton Univ. Press, Princeton, 1993. · Zbl 0821.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.