Dieudonné property. (English) Zbl 1033.46022

Let \(X_0\) be a locally compact Hausdorff space, \(C_0(X_0)\) the space of all scalar-valued bounded continuous functions on \(X_0\) vanishing at infinity, and \(X\) the one-point compactification of \(X_0\). In the present paper, the Dieudonné property of \(C_0(X_0)\) is derived from the Dieudonné property of \(C(X)\). This result is extended to the space \(C_0(X_0,E)\), \(E\) being a Banach space.


46E10 Topological linear spaces of continuous, differentiable or analytic functions
28C05 Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures
Full Text: EuDML


[1] EDWARDS R. E.: Functional Analysis. Theory and Applications. Holt Reinhart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. · Zbl 0182.16101
[2] GILLMAN L.-JERRISON M.: Rings of Continuous Functions. D. Van Nostrand Comp., Inc, Princeton-Toronto-London-New York, 1960. · Zbl 0100.32202
[3] GROTHENDIECK A.: Sur les applicationes linéaires faiblement compactes d’espace du type \(C(K)\). Canad. J. Math. 5 (1953), 129-173. · Zbl 0050.10902
[4] KALTON N. J.-SAAB E.-SAAB P.: On Dieudonné property of \(C(\Omega, E),\). Proc. Amer. Math. Soc. 96 (1986), 50-52. · Zbl 0604.46037
[5] KHURANA S. S.: Topologies on spaces of continuous vector-valued functions. Trans. Amer. Math. Soc. 241 (1978), 195-211. · Zbl 0335.46017
[6] KÖTHE G.: Topological Vector Spaces I. Springer-Verlag, New York, 1969. · Zbl 0179.17001
[7] PANCHAPAGESAN T. V.: A simple proof of Grothendieck theorem on Dieudonné property on \(C_0(T)\). Proc. Amer. Math. Soc. 129 (2001), 823-832. · Zbl 0966.47020
[8] SCHAEFFER H. H.: Topological Vector spaces. Springer Verlag, New York, 1986.
[9] WHEELER R. F.: Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97-190. · Zbl 0522.28009
[10] VARADARAJAN V. S.: Measures on topological spaces. Amer. Math. Soc. Transl. Ser. 2 48 (1965), 161-220.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.