zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new method to determine isochronous center conditions for polynomial differential systems. (English) Zbl 1034.34032
The authors give a new algorithm to compute period constants of complex polynomial systems, and the set of period constants of real polynomial systems is a spacial case of it. The algorithm is recursive and avoids complex integrating operations and solving equations. As an example of the algorithm, center conditions and isochronous center conditions for a class of higher degree systems have been discussed.

34C05Location of integral curves, singular points, limit cycles (ODE)
Full Text: DOI
[1] Amelbkin, B. B.; Lukasevnky, H. A.; Catovcki, A. N.: Nonlinear vibration. (1982)
[2] Blows, T. R.; Rousseau, C.: Bifurcation at infinity in polynomial vector fields. J. differential equations 104, 215-242 (1993) · Zbl 0778.34024
[3] Cairó, L.; Chavrriga, J.; Giné, J.; Llibre, J.: A class of reversible cubic systems with an isochronous center. Comput. math. Appl. 38, 39-53 (1999) · Zbl 0982.34024
[4] Chavarriga, J.; Giné, J.; García, I.: Isochronous centers of cubic systems with degenerate infinity. Differential equations dynam. Syst. 7, No. 2, 221-238 (1999) · Zbl 0982.34025
[5] Chavarriga, J.; Giné, J.; García, I.: Isochronous centers of a linear center perturbed by fourth degree homogrneous polynomial. Bull. sci. Math. 123, 77-96 (1999) · Zbl 0921.34032
[6] Chavarriga, J.; Giné, J.; García, I.: Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial. J. comput. Appl. math. 126, 351-368 (2000) · Zbl 0978.34028
[7] Chavarriga, J.; Giné, J.; García, I.: Isochronicity into a family of time-reversible cubic vector fields. Appl. math. Comput. 121, 129-145 (2001) · Zbl 1025.37011
[8] Christopher, C. J.; Devlin, J.: Isochronous centers in planar polynomial systems. SIAM J. Math. anal. 28, 162-177 (1997) · Zbl 0881.34057
[9] Farr, W. W.; Li, C.; Labouriau, I. S.; Langford, W. F.: Degenerate Hopf-bifurcation formulas and Hilbert’s 16th problem. SIAM J. Math. anal. 20, 13-29 (1989) · Zbl 0682.58035
[10] Gasull, A.; Manosa, V.: An explicit expression of the first Liapunov and period constants with applications. J. math. Anal. appl. 211, 190-212 (1997) · Zbl 0882.34040
[11] Gine, J.: Conditions for the existence of a center for the kukless homogeneous systems. Comput. math. Appl. 43, 1261-1269 (2002)
[12] Hassard, B.; Wan, Y. H.: Bifurcation formulae derived from center manifold theroy. J. math. Anal. appl. 63, 297-312 (1978) · Zbl 0435.34034
[13] Linyiping; Lijibin: Normal form and critical points of the period of closed orbits for planar autonomous systems. Acta math. Sinica 34, 490-501 (1991)
[14] Liu, Y.; Chen, H.: Formulas of singurlar point quantities and the first 10 saddle quantities for a class of cubic system. Acta mathematicae applicatae sinica 25, 295-302 (2002) · Zbl 1014.34021
[15] Liu, Y.; Li, J.: Theory of values of singular point in complex autonomous differential system. Science in China (Series A) 33, 10-24 (1990) · Zbl 0686.34027
[16] Lloyd, N. G.; Christopher, J.; Devlin, J.; Pearson, J. M.; Uasmin, N.: Quadratic like cubic systems. Differential equations dynam. Syst. 5, No. 3-4, 329-345 (1997) · Zbl 0898.34026
[17] Lloyd, N. G.; Pearson, J. M.: Symmetry in planar dynamical systems, J. Symbolic comput.. 33, 357-366 (2002) · Zbl 1003.34026
[18] Loud, W. S.: Behavior of the period of solutions of certain plane autonomous systems near centers. Contrib. differential equations 3, 21-36 (1964) · Zbl 0139.04301
[19] Mardesic, P.; Rousseau, C.; Toni, B.: Linearzation of isochronous centers. J. differential equations 121, 67-108 (1995) · Zbl 0830.34023
[20] Pleshkan, I.: A new method of investigating the isochronicity of a system of two differential equations. Differential equations 5, 796-802 (1969)
[21] Romanovski, V. G.; Suba, A.: Centers of some cubic systems. Ann. differential equations 17, 363-370 (2001)
[22] Salih, N.; Pons, R.: Center conditions for a lopsided quartic polynomial vector field. Bull. sci. Math. 126, 369-378 (2002) · Zbl 1015.34016
[23] Ye, Y.: Qualitative theory of polynomial differential systems. (1995) · Zbl 0854.34003