# zbMATH — the first resource for mathematics

Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. (English) Zbl 1034.37003
This paper is quite long and it is very difficult to summarize all of this. But main purpose of this paper is to prove Theorem 0.1 below.
Let $$M$$ be a compact orientable surface of genus $$g\geq2$$. Let $$(\Sigma, i)$$ be a divisor on $$M$$, $$\Sigma=\{p_1,\ldots,p_\sigma\}\subset M$$, $$i=(i_1,\ldots,i_\sigma)\in Z^\sigma$$, $$i_k<0$$ and $$\sum_ki_k=2-2g$$, $${\mathcal F}^i(M,\Sigma)$$ be the space of orientable measured foliations, $${\mathcal E}^i_\omega(M,\Sigma)$$ be the space of all smooth $$\omega$$-preserving vector fields on $$M\backslash\Sigma$$ such that $$\eta_X=i_X\omega$$ is smooth on $$M$$ and the orbit foliation $${\mathcal F}_X=\{\eta_X=0\}\in{\mathcal F}^i(M,\Sigma)$$.
Theorem 0.1. For almost all $$X\in{\mathcal D}^i_\omega(M,\Sigma)$$, the flow $$\Phi^\tau_X$$ has a deviation spectrum in the following sense. There exists a finite set of exponents $\lambda_1'(X)=1> \lambda_2'(X)>\cdots> \lambda_s'(X)>0$ and splitting of the space $${\mathcal T}^1_X(M)$$ of $$X$$-invariant distributions of order 1 ${\mathcal T}^1_X(M)={\mathcal T}^1_X(\lambda_1')\oplus\cdots\oplus {\mathcal T}^1_X(\lambda_s')$ such that the following holds. Let $$f\in H^1_0(M\backslash\Sigma)$$ be a weakly differentiable function with $$L^2$$ partial derivatives, supported in $$M\backslash\Sigma$$, such that $D^X(f)=0,\quad\text{for all }\quad D_X\in{\mathcal T}^1_X(\lambda_1')\oplus\cdots \oplus{\mathcal T}^1_X(\lambda_i').$ If $$i<s$$, then for all $$p\in M$$ with regular forward trajectory, $\limsup_{T\to+\infty} {\log\int_0^{\mathcal T}f(\Phi_X(p,\tau)\,d\tau\over\log{\mathcal T}} \leq\lambda_{i+1}'(X)$ and there exists $$D^X_{i+1}\in{\mathcal T}_X(\lambda_{i+1}')\backslash\{0\}$$ such that, if $$D_{i+1}^X(f)\neq0$$, then equality holds for almost all $$p\in M$$.
If $$i=s$$, then for all $$p\in M$$ with regular forward trajectory, $\limsup_{T\to+\infty} {\log\int_0^{\mathcal T}f(\Phi_X(p,\tau)\,d\tau\over\log{\mathcal T}}=0.$ The multiplicities $$m_i(X)=\dim{\mathcal T}_X(\lambda_i')$$ satisfy the conditions $$\sum_im_i(X)=g$$ and $$m_1(X)=1$$, since $${\mathcal T}_X(\lambda_1')=R\cdot\omega$$. The deviation spectrum with multiplicities $$\{(\lambda_i'(X),m_i(X))\}$$ is locally constant on $${\mathcal E}^i_\omega(M,\Sigma)$$.

##### MSC:
 37A25 Ergodicity, mixing, rates of mixing 32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables) 37C85 Dynamics induced by group actions other than $$\mathbb{Z}$$ and $$\mathbb{R}$$, and $$\mathbb{C}$$ 37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems 37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.) 37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) 37E35 Flows on surfaces 53D25 Geodesic flows in symplectic geometry and contact geometry
Full Text: