×

zbMATH — the first resource for mathematics

Locally compact quantum groups. (English) Zbl 1034.46508
Summary: We propose a simple definition of a locally compact quantum group in reduced form. By the word ‘reduced’ we mean that we suppose the Haar weight to be faithful. So in fact we define and study an arbitrary locally compact quantum group, represented on the \(L^2\)-space of its Haar weight. For this locally compact quantum group we construct the antipode with polar decomposition. We construct the associated multiplicative unitary and prove that it is manageable in the sense of Woronowicz. We define the modular element and prove the uniqueness of the Haar weights. Following M. Enock and J. M. Schwartz [“Kac algebras and duality of locally compact groups” (Springer, Berlin) (1992; Zbl 0805.22003)], we construct the reduced dual, which will again be a reduced locally compact quantum group. Finally we prove that the second dual is canonically isomorphic to the original reduced locally compact quantum group, extending the Pontryagin duality theorem.
A short overview of the main results of this paper appeared in J. Kustermans and S. Vaes [C. R. Acad. Sci. Paris, Sér. I, Math. 328, 871–876 (1999; Zbl 0957.46037)].

MSC:
46L65 Quantizations, deformations for selfadjoint operator algebras
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
43A99 Abstract harmonic analysis
22D99 Locally compact groups and their algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] ABE E. , Hopf Algebras , Cambridge Tracts in Mathematics, Vol. 74, Cambridge University Press, Cambridge, 1980 . MR 83a:16010 | Zbl 0476.16008 · Zbl 0476.16008
[2] BAAJ S. , Représentation régulière du groupe quantique des déplacements de Woronowicz , Astérisque 232 ( 1995 ) 11-48. MR 97a:46107 | Zbl 0840.46036 · Zbl 0840.46036
[3] BAAJ S. , Représentation régulière du groupe quantique E\mu (2) , C. R. Acad. Sci. Paris, Série I 314 ( 1992 ) 1021-1026. MR 93f:46106 | Zbl 0771.17011 · Zbl 0771.17011
[4] BAAJ S. , Multiplicateurs non bornés , Thèse 3ème cycle, Université Paris-6, 1980 .
[5] BAAJ S. , Prolongement d’un poids , C. R. Acad. Sci., Paris, Série A 288 ( 1979 ) 1013-1015. MR 80d:46108 | Zbl 0414.46046 · Zbl 0414.46046
[6] BAAJ S. , SKANDALIS G. , Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres , Ann. Scient. Éc. Norm. Sup., 4e série 26 ( 1993 ) 425-488. Numdam | MR 94e:46127 | Zbl 0804.46078 · Zbl 0804.46078 · numdam:ASENS_1993_4_26_4_425_0 · eudml:82346
[7] BANICA T. , Le groupe quantique compact libre U(n) , Commun. Math. Phys. 190 ( 1997 ) 143-172. MR 99k:46095 | Zbl 0906.17009 · Zbl 0906.17009 · doi:10.1007/s002200050237
[8] BUSBY R.C. , Double centralizers and extensions of C*-algebras , Trans. Amer. Math. Soc. 132 ( 1968 ) 79-99. MR 37 #770 | Zbl 0165.15501 · Zbl 0165.15501 · doi:10.2307/1994883
[9] CIORĂNESCU I. , ZSIDÓ L. , Analytic generators for one-parameter groups , Tôhoku Math. J. 28 ( 1976 ) 327-362. Article | MR 55 #3872 | Zbl 0361.47014 · Zbl 0361.47014 · doi:10.2748/tmj/1178240775 · minidml.mathdoc.fr
[10] COMBES F. , Poids associé à une algèbre hilbertienne à gauche , Compos. Math. 23 ( 1971 ) 49-77. Numdam | MR 44 #5786 | Zbl 0208.38201 · Zbl 0208.38201 · numdam:CM_1971__23_1_49_0 · eudml:89076
[11] COMBES F. , Poids sur une C*-algèbre , J. Math. Pures et Appl. 47 ( 1968 ) 57-100. MR 38 #5016 | Zbl 0165.15401 · Zbl 0165.15401
[12] D’ANTONI C. , ZSIDÓ L. , Groups of linear isometries on multiplier C*-algebras , Pac. J. Math. 193 (2) ( 2000 ) 279-306. MR 2001g:46122 | Zbl 01537813 · Zbl 1088.46512 · doi:10.2140/pjm.2000.193.279 · pjm.math.berkeley.edu
[13] DRINFEL’D V.G. , Quantum groups , Proceedings ICM Berkeley ( 1986 ) 798-820. MR 89f:17017 | Zbl 0667.16003 · Zbl 0667.16003
[14] EFFROS E. , RUAN Z.-J. , Discrete quantum groups I : The Haar measure , Int. J. Math. 5 (5) ( 1994 ) 681-723. MR 95j:46089 | Zbl 0824.17020 · Zbl 0824.17020 · doi:10.1142/S0129167X94000358
[15] ENOCK M. , SCHWARTZ J.-M. , Kac Algebras and Duality of Locally Compact Groups , Springer-Verlag, Berlin, 1992 . MR 94e:46001 | Zbl 0805.22003 · Zbl 0805.22003
[16] ENOCK M. , VALLIN J.-M. , C*-algèbres de Kac et algèbres de Kac , Proc. London Math. Soc. 66 (3) ( 1993 ) 619-650. MR 94e:46101 | Zbl 0792.46040 · Zbl 0792.46040 · doi:10.1112/plms/s3-66.3.619
[17] HAAGERUP U. , Operator-valued weights in von Neumann algebras, I , J. Funct. Anal. 32 ( 1979 ) 175-206. MR 81e:46049a | Zbl 0426.46046 · Zbl 0426.46046 · doi:10.1016/0022-1236(79)90053-3
[18] HAAGERUP U. , Normal weights on W*-algebras , J. Funct. Anal. 19 ( 1975 ) 302-317. MR 52 #1338 | Zbl 0304.46043 · Zbl 0304.46043 · doi:10.1016/0022-1236(75)90060-9
[19] KIRCHBERG E. , Lecture on the conference ’Invariants in operator algebras’ , Copenhagen, August 1992 .
[20] KOELINK H.T. , Addition formula for a 2-parameter family of Askey-Wilson polynomials , Preprint, KU Leuven, 1994 . · Zbl 0844.33011
[21] KOELINK H.T. , On quantum groups and q-special functions , PhD-thesis, Rijksuniversiteit Leiden, 1991 . · Zbl 0721.17014
[22] KOELINK H.T. , VERDING J. , Spectral analysis and the Haar functional on the quantum SU(2) group , Commun. Math. Phys. 177 ( 1996 ) 399-415. Article | MR 97a:33048 | Zbl 0848.22029 · Zbl 0848.22029 · doi:10.1007/BF02101899 · minidml.mathdoc.fr
[23] KUSTERMANS J. , Locally compact quantum groups in the universal setting , Int. J. Math., to appear. #math/9902015. · Zbl 1111.46311 · doi:10.1142/S0129167X01000757
[24] KUSTERMANS J. , KMS-weights on C*-algebras , Preprint, Odense Universitet, 1997 . #funct-an/9704008.
[25] KUSTERMANS J. , One-parameter representations on C*-algebras , Preprint, Odense Universitet, 1997 . #funct-an/9707010. · Zbl 1009.46038
[26] KUSTERMANS J. , The functional calculus of regular operators on Hilbert C*-modules revisited , Preprint, Odense Universitet, 1997 . #funct-an/9706007.
[27] KUSTERMANS J. , VAES S. , A simple definition for locally compact quantum groups , C. R. Acad. Sci. Paris, Série I 328 (10) ( 1999 ) 871-876. MR 2000i:46051 | Zbl 0957.46037 · Zbl 0957.46037 · doi:10.1016/S0764-4442(99)80288-2
[28] KUSTERMANS J. , VAES S. , The operator algebra approach to quantum groups , Proc. Natl. Acad. Sc. 97 (2) ( 2000 ) 547-552. MR 2001m:46118 | Zbl 0978.46044 · Zbl 0978.46044 · doi:10.1073/pnas.97.2.547
[29] KUSTERMANS J. , VAES S. , Locally compact quantum groups in the von Neumann algebraic setting , Preprint, KU, Leuven, 2000 . #math.OA/0005219. · Zbl 1034.46508
[30] KUSTERMANS J. , VAES S. , Weight theory for C*-algebraic quantum groups , Preprint, KU Leuven & University College Cork, 1999 . #math/9901063. · Zbl 0957.46037
[31] KUSTERMANS J. , VAN DAELE A. , C*-algebraic quantum groups arising from algebraic quantum groups , Int. J. Math. 8 (8) ( 1997 ) 1067-1139. #q-alg/9611023. arXiv | MR 99a:46130 | Zbl 1009.46038 · Zbl 1009.46038 · doi:10.1142/S0129167X97000500 · minidml.mathdoc.fr
[32] LANCE C. , Hilbert C*-Modules. A Toolkit for Operator Algebraists , London Math. Soc. Lect. Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995 . Zbl 0822.46080 · Zbl 0822.46080
[33] MASUDA T. , NAKAGAMI Y. , A von Neumann algebra framework for the duality of the quantum groups , Publ. RIMS, Kyoto University 30 ( 1994 ) 799-850. Article | MR 96b:46103 | Zbl 0839.46055 · Zbl 0839.46055 · doi:10.2977/prims/1195165585 · minidml.mathdoc.fr
[34] MASUDA T. , NAKAGAMI Y. , WORONOWICZ S.L. , Lectures at the Fields Institute and at the University of Warsaw, 1995 .
[35] PEDERSEN G.K. , C*-Algebras and their Automorphism Groups , Academic Press, London, 1979 . MR 81e:46037 | Zbl 0416.46043 · Zbl 0416.46043
[36] PEDERSEN G.K. , TAKESAKI M. , The Radon-Nikodym theorem for von Neumann algebras , Acta Math. 130 ( 1973 ) 53-87. MR 54 #948 | Zbl 0262.46063 · Zbl 0262.46063 · doi:10.1007/BF02392262
[37] PODLEŚ P. , Quantum spheres , Lett. Math. Phys. 14 ( 1987 ) 193-202. MR 89b:46081 | Zbl 0634.46054 · Zbl 0634.46054 · doi:10.1007/BF00416848
[38] PODLEŚ P. , WORONOWICZ S.L. , Quantum deformation of Lorentz group , Commun. Math. Phys. 130 ( 1990 ) 381-431. Article | MR 91f:46100 | Zbl 0703.22018 · Zbl 0703.22018 · doi:10.1007/BF02473358 · minidml.mathdoc.fr
[39] QUAEGEBEUR J. , VERDING J. , A construction for weights on C*-algebras. Dual weights for C*-crossed products , Int. J. Math. 10 (1) ( 1999 ) 129-157. MR 2001d:46099 | Zbl 0956.46046 · Zbl 0956.46046 · doi:10.1142/S0129167X99000069
[40] QUAEGEBEUR J. , VERDING J. , Left invariant weights and the left regular corepresentation for locally compact quantum semi-groups , Preprint, KU Leuven, 1994 . · Zbl 0956.46046
[41] RIEFFEL M.A. , Compact quantum groups associated with toral subgroups , Contemp. Math. 145 ( 1993 ) 465-491. MR 94i:22022 | Zbl 0795.17017 · Zbl 0795.17017
[42] RIEFFEL M.A. , Deformation quantization of Heisenberg manifolds , Commun. Math. Phys. 122 ( 1989 ) 531-562. Article | MR 90e:46060 | Zbl 0679.46055 · Zbl 0679.46055 · doi:10.1007/BF01256492 · minidml.mathdoc.fr
[43] RIEFFEL M.A. , Integrable and proper actions on C*-algebras, and square-integrable representations of groups , 1998 . #math/9809098. · Zbl 1047.22004
[44] RIEFFEL M.A. , Some solvable quantum groups. Operator algebras and topology , in : Arveson W.B. et al. (Eds.), Proceedings of the OATE 2 Conference Bucharest, Romania, 1989 , Pitman Research Notes in Mathematics, Vol. 270, 1992 , pp. 146-159. Zbl 0804.17010 · Zbl 0804.17010
[45] SAKAI S. , C*-Algebras and W*-Algebras , Springer-Verlag, Berlin, 1971 . MR 56 #1082 | Zbl 0219.46042 · Zbl 0219.46042
[46] STRATILA S. , Modular Theory in Operator Algebras , Abacus Press, Tunbridge Wells, England, 1981 . MR 85g:46072 | Zbl 0504.46043 · Zbl 0504.46043
[47] STRATILA S. , ZSIDÓ L. , Lectures on von Neumann Algebras , Abacus Press, Tunbridge Wells, England, 1979 . MR 81j:46089 | Zbl 0391.46048 · Zbl 0391.46048
[48] TAKESAKI M. , Theory of Operator Algebras I , Springer-Verlag, New York, 1979 . MR 81e:46038 | Zbl 0436.46043 · Zbl 0436.46043
[49] TAYLOR D.C. , The strict topology for double centralizer algebras , Trans. Amer. Math. Soc. 150 ( 1970 ) 633-643. MR 44 #7302 | Zbl 0204.14701 · Zbl 0204.14701 · doi:10.2307/1995543
[50] VAES S. , The unitary implementation of a locally compact quantum group action , J. Funct. Anal., to appear. #math.OA/0005262. arXiv | Zbl 1011.46058 · Zbl 1011.46058 · doi:10.1006/jfan.2000.3704 · minidml.mathdoc.fr
[51] VAES S. , Examples of locally compact quantum groups through the bicrossed product construction , in : Proceedings of the XIIIth International Conference on Mathematical Physics, London, 2000 , to appear. Zbl 1045.46042 · Zbl 1045.46042
[52] VAES S. , A Radon-Nikodym theorem for von Neumann algebras , J. Oper. Th., to appear. #math.OA/9811122. Zbl 0995.46042 · Zbl 0995.46042
[53] VAES S. , Hopf C*-algebras , Masters Thesis, KU Leuven, 1998 .
[54] VAES S. , VAN DAELE A. , Hopf C*-algebras , Proc. London Math. Soc., to appear. #math.OA/9907030. arXiv | Zbl 1028.46100 · Zbl 1028.46100 · doi:10.1112/S002461150101276X · minidml.mathdoc.fr
[55] VAINERMAN L.I. , KAC G.I. , Nonunimodular ring-groups and Hopf-von Neumann algebras , Math. USSR, Sbornik 23 ( 1974 ) 185-214. MR 50 #536 | Zbl 0309.46052 · Zbl 0309.46052 · doi:10.1070/SM1974v023n02ABEH002176
[56] VAINERMAN G.I. , KAC G.I. , Nonunimodular ring-groups and Hopf-von Neumann algebras , Soviet Math. Dokl. 14 ( 1973 ) 1144-1148. Zbl 0296.46072 · Zbl 0296.46072
[57] VAKSMAN L.L. , SOIBEL’MAN Y.S. , Algebra of functions on the quantum group SU(2) , Funct. Anal. Appl. 22 ( 1988 ) 170-181. MR 90f:17019 | Zbl 0679.43006 · Zbl 0679.43006 · doi:10.1007/BF01077623
[58] VALLIN J.-M. , C*-algèbres de Hopf et C*-algèbres de Kac , Proc. London Math. Soc. 50 (3) ( 1985 ) 131-174. MR 86f:46072 | Zbl 0577.46063 · Zbl 0577.46063 · doi:10.1112/plms/s3-50.1.131
[59] VAN DAELE A. , An algebraic framework for group duality , Adv. in Math. 140 ( 1998 ) 323-366. MR 2000g:16045 | Zbl 0933.16043 · Zbl 0933.16043 · doi:10.1006/aima.1998.1775
[60] VAN DAELE A. , Discrete quantum groups , J. Algebra 180 ( 1996 ) 431-444. MR 97a:16076 | Zbl 0864.17012 · Zbl 0864.17012 · doi:10.1006/jabr.1996.0075
[61] VAN DAELE A. , The Haar measure on a compact quantum group , Proc. Amer. Math. Soc. 123 ( 1995 ) 3125-3128. MR 95m:46097 | Zbl 0844.46032 · Zbl 0844.46032 · doi:10.2307/2160670
[62] VAN DAELE A. , Multiplier Hopf Algebras , Trans. Amer. Math. Soc. 342 ( 1994 ) 917-932. MR 94h:16075 | Zbl 0809.16047 · Zbl 0809.16047 · doi:10.2307/2154659
[63] VAN DAELE A. , WANG S.Z. , Universal quantum groups , Int. J. Math. 7 (2) ( 1996 ) 255-263. MR 97d:46090 | Zbl 0870.17011 · Zbl 0870.17011 · doi:10.1142/S0129167X96000153
[64] VAN DAELE A. , WORONOWICZ S.L. , Duality for the quantum E(2) group , Pacific J. Math. 173 (2) ( 1996 ) 375-385. Article | MR 97d:46091 | Zbl 0879.17008 · Zbl 0879.17008 · minidml.mathdoc.fr
[65] VERDING J. , Weights on C*-algebras , PhD Thesis, KU Leuven, 1995 . · Zbl 0956.46046
[66] WANG S.Z. , Free Products of compact quantum groups , Commun. Math. Phys. 167 ( 1995 ) 671-692. Article | MR 95k:46104 | Zbl 0838.46057 · Zbl 0838.46057 · doi:10.1007/BF02101540 · minidml.mathdoc.fr
[67] WORONOWICZ S.L. , Compact quantum groups , in : Symétries Quantiques (Les Houches, 1995 ), North-Holland, Amsterdam, 1998 , pp. 845-884. MR 99m:46164 | Zbl 0997.46045 · Zbl 0997.46045
[68] WORONOWICZ S.L. , From multiplicative unitaries to quantum groups , Int. J. Math. 7 (1) ( 1996 ) 127-149. MR 96k:46136 | Zbl 0876.46044 · Zbl 0876.46044 · doi:10.1142/S0129167X96000086
[69] WORONOWICZ S.L. , Quantum E(2) group and its Pontryagin dual , Lett. Math. Phys. 23 ( 1991 ) 251-263. MR 93b:17058 | Zbl 0752.17017 · Zbl 0752.17017 · doi:10.1007/BF00398822
[70] WORONOWICZ S.L. , Unbounded elements affiliated with C*-algebras and non-compact quantum groups , Commun. Math. Phys. 136 ( 1991 ) 399-432. Article | MR 92b:46117 | Zbl 0743.46080 · Zbl 0743.46080 · doi:10.1007/BF02100032 · minidml.mathdoc.fr
[71] WORONOWICZ S.L. , Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups , Invent. Math. 93 ( 1988 ) 35-76. MR 90e:22033 | Zbl 0664.58044 · Zbl 0664.58044 · doi:10.1007/BF01393687 · eudml:143589
[72] WORONOWICZ S.L. , Compact matrix pseudogroups , Commun. Math. Phys. 111 ( 1987 ) 613-665. Article | MR 88m:46079 | Zbl 0627.58034 · Zbl 0627.58034 · doi:10.1007/BF01219077 · minidml.mathdoc.fr
[73] WORONOWICZ S.L. , Twisted SU(2) group. An example of a non-commutative differential calculus , Publ. RIMS, Kyoto University 23 ( 1987 ) 117-181. Article | MR 88h:46130 | Zbl 0676.46050 · Zbl 0676.46050 · doi:10.2977/prims/1195176848 · minidml.mathdoc.fr
[74] WORONOWICZ S.L. , Pseudospaces, pseudogroups and Pontrjagin duality , in : Proceedings of the International Conference on Mathematical Physics (Lausanne, 1979 ), Lecture Notes in Physics, Vol. 116, 1980 , pp. 407-412. Zbl 0513.46046 · Zbl 0513.46046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.