Schneider, Guido; Wayne, C. Eugene The long-wave limit for the water wave problem. I: The case of zero surface tension. (English) Zbl 1034.76011 Commun. Pure Appl. Math. 53, No. 12, 1475-1535 (2000). The paper revisits the classical problem of the description of long small-amplitude weakly nonlinear weakly dispersive surface waves in a long channel, neglecting the capillary effects. The analysis starts with a system of equations for two-dimensional irrotational inviscid flow. It is proved that, on a relatively short time scale, \(\sim 1/\epsilon\), a general initial perturbation, in the form of a localized pulse, splits into two pulses which travel in opposite directions. At a longer time scale, \(\sim \epsilon^{-3}\), each of the two pulses splits into an array of solitons obeying Korteweg-de Vries (KdV) equation. At the latter time scale, it is also proved that collisions between solitons can be described asymptotically correctly by KdV equation. The proofs are based on estimates of the difference between the solutions to the full water-wave system of equations and the asymptotic KdV equation. A novelty in comparison with previous works analyzing the rigorous correspondence between the full system and the approximation based on the KdV equation is that the class of functions admitted in the analysis does not exclude solitons and soliton trains. Reviewer: Boris A. Malomed (Tel Aviv) Cited in 4 ReviewsCited in 94 Documents MSC: 76B25 Solitary waves for incompressible inviscid fluids 35Q51 Soliton equations 76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics Keywords:Korteweg-de Vries equation; Boussinesq equation; soliton; two-dimensional irrotational inviscid flow; perturbation; soliton trains × Cite Format Result Cite Review PDF Full Text: DOI References: [1] ; Solitons and the inverse scattering transform. SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. · Zbl 0472.35002 [2] Tides and waves. Encyclopedia Metropolitana 5 (1845), 241-396, London. [3] Beale, Comm Pure Appl Math 46 pp 1269– (1993) · Zbl 0796.76041 · doi:10.1002/cpa.3160460903 [4] Benjamin, Philos Trans Roy Soc London Ser A 272 pp 47– (1972) · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032 [5] Boussinesq, C R Acad Sci Paris Sér A-B 72 pp 755– (1871) [6] Boussinesq, J Math Pures Appl 17 pp 55– (1872) [7] Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences Inst. France (séries 2) 23 (1877), 1-680. [8] Byatt-Smith, J Fluid Mech 49 pp 625– (1971) · Zbl 0229.76011 · doi:10.1017/S0022112071002295 [9] Collet, Comm Math Phys 132 pp 139– (1990) · Zbl 0756.35096 · doi:10.1007/BF02278004 [10] Craig, Comm Partial Differential Equations 10 pp 787– (1985) · Zbl 0577.76030 · doi:10.1080/03605308508820396 [11] Eckhaus, J Nonlinear Sci 3 pp 329– (1993) · Zbl 0797.35070 · doi:10.1007/BF02429869 [12] ; The inverse scattering transformation and the theory of solitons. An introduction. North-Holland Mathematics Studies, 50 North-Holland, Amsterdam-New York, 1981. [13] Friedrichs, Comm Pure Appl Math 7 pp 517– (1954) · Zbl 0057.42204 · doi:10.1002/cpa.3160070305 [14] Capillary-gravity water-waves problem as a dynamical system. Proceedings of the IUTAM/ISIMM Symposium on Structure and Dynamics of Nonlinear Waves in Fluids (Hannover, 1994), 42-57. Advanced Series in Nonlinear Dynamics, 7. World Scientific, River Edge, N.J., 1995. [15] Kano, Osaka J Math 23 pp 389– (1986) [16] Quasi-linear equations of evolution, with applications to partial differential equations. Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), 25-70. Lectures Note in Mathematics, 448. Springer, Berlin, 1975. · doi:10.1007/BFb0067080 [17] Kato, Manuscripta Math 28 pp 89– (1979) · Zbl 0415.35070 · doi:10.1007/BF01647967 [18] On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93-128. Advances in Mathematics, Supplementary Studies, 8. Academic, New York-London, 1983. [19] Kenig, J Amer Math Soc 4 pp 323– (1991) · doi:10.1090/S0894-0347-1991-1086966-0 [20] Kirrmann, Proc Roy Soc Edinburgh Sect A 122 pp 85– (1992) · Zbl 0786.35122 · doi:10.1017/S0308210500020989 [21] Korteweg, Phil Mag 39 pp 442– (1895) · doi:10.1080/14786449508620739 [22] ; Lehrbuch der theoretischen Physik. Band 6. Hydrodynamik. Akademie, Berlin, 1991. [23] Long, J Fluid Mech 20 pp 161– (1964) · Zbl 0123.22901 · doi:10.1017/S0022112064001094 [24] Mattioli, Phys Fluids A 3 pp 2355– (1991) · Zbl 0753.76026 · doi:10.1063/1.857882 [25] Meyer, Bull Calcutta Math Soc 71 pp 121– (1979) [26] The Cauchy-Poisson problem. Dinamika Splošn Sredy Vypo 18 Dinamika Zidkost. so Svobod. Granicami (1974), 104-210, 254. [27] Models of Tsunami waves. Computational techniques and applications: CTAC95. Proceedings of the Seventh Biennial Conference held at Swinburne University of Technology, Melbourne, July 3-5, 1995, 619-624. Edited by and . World Scientific, River Edge, N.J., (1996). [28] Pierce, Nonlinearity 8 pp 769– (1995) · Zbl 0833.35128 · doi:10.1088/0951-7715/8/5/007 [29] Rayleigh, Philos Mag 5 (1876) [30] Report on waves. Rep. 14th Meet. Brit. Assoc. Adv. Sci., York, London, John Murray, (1844), 311-390. [31] Schneider, Z Angew Math Phys 45 pp 433– (1994) · Zbl 0805.35125 · doi:10.1007/BF00945930 [32] Schneider, Z Angew Math Mech 76 pp 341– (1996) · doi:10.1002/zamm.19960760608 [33] Schneider, SIAM J Appl Math 58 pp 1237– (1998) · Zbl 0911.35105 · doi:10.1137/S0036139995287946 [34] ; The long wave limit for the water wave problem. II. With surface tension. Preprint, 2000. [35] Shinbrot, Indiana Univ Math J 25 pp 281– (1976) · Zbl 0329.76016 · doi:10.1512/iumj.1976.25.25023 [36] van Harten, J Nonlinear Sci 1 pp 397– (1991) · Zbl 0795.35112 · doi:10.1007/BF02429847 [37] Wu, Invent Math 130 pp 39– (1997) · Zbl 0892.76009 · doi:10.1007/s002220050177 [38] Wu, J Amer Math Soc 12 pp 445– (1999) · Zbl 0921.76017 · doi:10.1090/S0894-0347-99-00290-8 [39] Yosihara, Publ Res Inst Math Sci 18 pp 49– (1982) · Zbl 0493.76018 · doi:10.2977/prims/1195184016 [40] Yosihara, J Math Kyoto Univ 23 pp 649– (1983) · Zbl 0548.76018 · doi:10.1215/kjm/1250521429 [41] Zabusky, Phys Rev Lett 15 pp 240– (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.