Biles, Daniel C.; Robinson, Mark P.; Spraker, John S. A generalization of the Lane-Emden equation. (English) Zbl 1035.34003 J. Math. Anal. Appl. 273, No. 2, 654-666 (2002). The authors study the initial value problem \(y''(t)+p(t)y'(t)+q(t,y(t))=0\), \(y(0)=a\), \(y'(0)=0\). Four conditions on \(p\) and \(q\) are established so that a solution to the initial value problem exists. If additionally \(q\) is Lipschitzian then the solution is unique. Reviewer: Dana Petcu (Timişoara) Cited in 12 Documents MSC: 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 34A34 Nonlinear ordinary differential equations and systems 65L05 Numerical methods for initial value problems involving ordinary differential equations Keywords:second-order initial value problems; solution existence; solution uniqueness PDF BibTeX XML Cite \textit{D. C. Biles} et al., J. Math. Anal. Appl. 273, No. 2, 654--666 (2002; Zbl 1035.34003) Full Text: DOI References: [1] Beech, M., An approximate solution for the polytrope \(n=3\), Astrophys. Space Sci., 132, 393-396 (1987) [2] Bellman, R., Stability Theory of Differential Equations (1953), McGraw-Hill: McGraw-Hill New York · Zbl 0052.31505 [3] Bhutani, O. P.; Vijayakumar, K., On certain new and exact solutions of the Emden-Fowler equation and Emden equation via invariant variational principles and group invariance, J. Austral. Math. Soc. Ser. B, 32, 457-468 (1991) · Zbl 0735.34001 [4] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1939), University of Chicago Press: University of Chicago Press Chicago · Zbl 0022.19207 [5] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0042.32602 [6] Datta, B. K., Analytic solution to the Lane-Emden equation, Nuovo Cimento, 111, 1385-1388 (1996) [7] Habets, P.; Zanolin, F., Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl., 181, 684-700 (1994) · Zbl 0801.34029 [8] Hastings, S. P., Boundary value problems in one differential equation with a discontinuity, J. Differential Equations, 1, 346-369 (1965) · Zbl 0142.06303 [9] Hinton, D., An oscillation criterion for solutions of \((ry′)′+qy^γ=0\), Michigan Math. J., 16, 349-352 (1969) · Zbl 0188.15401 [10] Horedt, G. P., Exact solutions of the Lane-Emden equation in \(N\)-dimensional space, Astronom. Astrophys., 160, 148-156 (1986) · Zbl 0602.76082 [11] Horedt, G. P., Approximate analytical solutions of the Lane-Emden equation in \(N\)-dimensional space, Astronom. Astrophys., 172, 359-367 (1987) · Zbl 0609.76082 [12] Horedt, G. P., Topology of the Lane-Emden equation, Astronom. Astrophys., 177, 117-130 (1987) · Zbl 0609.76082 [13] Horedt, G. P., Analytical and numerical values of Emden-Chandrasekhar associated functions, Astrophys. J., 357, 560-565 (1990) [14] Janus, J.; Myjak, J., A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal., 23, 953-970 (1994) · Zbl 0819.34016 [15] Kaper, H. G.; Kwong, M. K., Concavity and monotonicity properties of solutions of Emden-Fowler equations, Differential Integral Equations, 1, 327-340 (1988) · Zbl 0723.34026 [16] Leach, P. G.L., First integrals for the modified Emden equation \(q̈+α(t)q̇+q^n=0\), J. Math. Phys., 26, 2510-2514 (1985) · Zbl 0587.34004 [17] Liu, F. K., Polytropic gas spheres: an approximate analytic solution of the Lane-Emden equation, Mon. Not. Roy. Astronom. Soc., 281, 1197-1205 (1996) [18] Miller, R. K.; Michel, A. N., Ordinary Differential Equations (1982), Academic Press: Academic Press New York · Zbl 0499.34024 [19] Mohan, C.; Al-Bayaty, A. R., Power-series solutions of the Lane-Emden equation, Astrophys. Space Sci., 73, 227-239 (1980) · Zbl 0457.76039 [20] Mydlarczyk, W., A singular initial-value problem for second and third order differential equations, Colloq. Math., 68, 249-257 (1995) · Zbl 0821.34006 [21] Ranganathan, P. V., Solutions of some classes of second order non-linear ordinary differential equations, Internat. J. Non-Linear Mech., 23, 421-429 (1988) · Zbl 0761.34013 [22] Ranganathan, P. V., Integrals of the Emden-Fowler equations, Internat. J. Non-Linear Mech., 27, 583-590 (1992) · Zbl 0760.34006 [23] Rosenau, P., A note on integration of the Emden-Fowler equation, Internat. J. Non-Linear Mech., 19, 303-308 (1984) · Zbl 0562.34002 [24] Rothe, F., A variant of Frobenius’ method for the Emden-Fower equation, Appl. Anal., 66, 227-245 (1997) [25] Schechter, E., Handbook of Analysis and Its Foundations (1997), Academic Press: Academic Press San Diego · Zbl 0943.26001 [26] Seidov, Z. F.; Kyzakhmedov, R. Kh., Solution of the Lane-Emden problem in series, Soviet Astronom., 21, 399-400 (1977) [27] Seidov, Z. F.; Kyzakhmedov, R. Kh., New solutions of the Lane-Emden equation, Soviet Astronom., 22, 711-714 (1978) · Zbl 0411.34025 [28] Sharma, V. D., A non-elliptic solution of the Lane-Emden equation for index \(n=5\), Phys. Lett., 60A, 381-382 (1977) [29] Shawegfah, N. T., Nonperturbative approximate solution for Lane-Emden equation, J. Math. Phys., 34, 4364-4369 (1993) · Zbl 0780.34007 [30] Wong, J. S.W., On the global asymptotic stability of \((p(t)x′)′+q(t)x^{2n−1}=0\), J. Inst. Math. Appl., 3, 403-405 (1967) · Zbl 0173.10802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.