zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronizing chaotic systems using backstepping design. (English) Zbl 1035.34025
The paper deals with the problem of synchronization of coupled systems. Given two systems (possibly exhibiting chaotic dynamics) $x'=f(x,t)$ and $y'=f(y,t)+u$, $x,y\in \bbfR\sp{n}$. The authors propose a recursive procedure for designing an appropriate control $u$, which makes the systems synchronized, i.e., $\Vert x(t)-y(t)\Vert \to 0$ as $t\to\infty$, for some set of initial conditions. The algorithm combines the choice of the Lyapunov function with the design of a controller.

34C15Nonlinear oscillations, coupled oscillators (ODE)
37N35Dynamical systems in control
34D23Global stability of ODE
37B25Lyapunov functions and stability; attractors, repellers
93C10Nonlinear control systems
Full Text: DOI
[1] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[2] Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits. IEEE trans. Circ. syst. I 38, 453-456 (1991) · Zbl 1058.37538
[3] Bai, E. W.; Lonngran, E. E.: Synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 8, 51-58 (1997) · Zbl 1079.37515
[4] Liao, T. L.: Adaptive synchronization of two Lorenz systems. Chaos, solitons & fractals 9, 1555-1561 (1998) · Zbl 1047.37502
[5] Cuomo, K. M.; Oppenheim, A. V.; Strogatz, S. H.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE trans. Circ. syst. I 40, 626-633 (1993)
[6] Liao, T. -L.; Tsai, S. -H.: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, solitons & fractals 11, 1387-1396 (2000) · Zbl 0967.93059
[7] Bai, E. -W.; Lonngren, K. E.: Synchronization and control of chaotic systems. Chaos, solitons & fractals 10, 1571-1575 (1999) · Zbl 0958.93513
[8] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P.: Nonlinear and adaptive control design. (1995)
[9] Mascolo, S.; Grassi, G.: Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit. Int. J. Bifur. chaos 9, 1425-1434 (1999) · Zbl 0956.93501
[10] Rodrigues, H. M.; Alberto, L. F. C.; Bretas, N. G.: On the invariance principle: generalizations and applications to synchronization. IEEE trans. Circ. syst.----I: fundamental theory appl. 47, 730-739 (2000)