Solutions for a quasilinear Schrödinger equation: a dual approach. (English) Zbl 1035.35038

The authors develop a variational approach in \(H^1(\mathbb{R}^N)\) for proving the existence of solutions of a quasilinear stationary Schrödinger equation. This is achieved by means of a suitable change of variables for transforming the problem into an equation of a semilinear elliptic type to which one applies the Mountain Pass geometry.


35J60 Nonlinear elliptic equations
47J30 Variational methods involving nonlinear operators
35J20 Variational methods for second-order elliptic equations
Full Text: DOI


[1] Berestycki, H.; Gallouët, T.; Kavian, O., Equations de champs scalaires euclidiens non linéaires dans le plan, C.R. acad. sci. Paris ser. I math., 297, 5, 307-310, (1983) · Zbl 0544.35042
[2] Berestycki, H.; Lions, P.L., Nonlinear scalar field equations I, Arch. rational mech. anal., 82, 313-346, (1983)
[3] Brizkik, L.; Eremko, A.; Piette, B.; Zakrzewski, W.J., Electron self-trapping in a discrete two-dimensional lattice, Physica D, 159, 71-90, (2001) · Zbl 0983.81533
[4] Colin, M., Stability of standing waves for a quasilinear Schrödinger equation in space dimension 2, Adv. differential equations, 8, 1, 1-28, (2003) · Zbl 1042.35074
[5] Coti Zelati, V.; Rabinowitz, P.H., Homoclinic type solutions for a semilinear elliptic PDE on \(R\^{}\{N\}\), Commun. pure appl. math., XIV, 1217-1269, (1992) · Zbl 0785.35029
[6] Ekeland, I., Convexity methods in Hamiltonian mechanics, (1990), Springer Berlin · Zbl 0707.70003
[7] Liu, J.-Q.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, Proc. amer. math. soc., 131, 441-448, (2003) · Zbl 1229.35269
[8] Liu, J.-Q.; Wang, Y.-Q.; Wang, Z.-Q., Soliton solutions for quasilinear Schrödinger equations, II, J. differential equation, 187, 473-493, (2003) · Zbl 1229.35268
[9] Jeanjean, L.; Tanaka, K., A remark on least energy solutions in \(R\^{}\{N\}\), Proc. amer. math. soc., 131, 2399-2408, (2003) · Zbl 1094.35049
[10] L. Jeanjean, K. Tanaka, A note on a mountain pass characterization of least energy solutions, Adv. Nonlinear Studies, to appear. · Zbl 1095.35006
[11] Lions, P.L., The concentration-compactness principle in the calculus of variations. the locally compact case. part I and II, Ann. inst. H. Poincaré, anal. non lineaire, 1, 109, 145 and 223.283, (1984)
[12] Poppenberg, M.; Schmitt, K.; Wang, Z.-Q., On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. var., 14, 329-344, (2002) · Zbl 1052.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.