zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A periodically forced Wilson--Cowan system. (English) Zbl 1035.92007
Summary: A Wilson-Cowan system [{\it H. R. Wilson} and {\it J. D. Cowan}, Biophys. J. 12, 1--24 (1972)],, which models the interaction between subpopulations of excitatory and inhibitory neurons, is studied for the case in which the inhibitory neurons are receiving external periodic input. If the feedback within the excitatory population is large enough, the response of the system to large amplitude, low frequency input is determined by the relative values of the excitatory threshold $\theta_x$ and the inhibitory-to-excitatory feedback parameter $b$. Feedback to the inhibitory cells is assumed to be relatively small. In the parameter range considered, the system has two periodic attractors: a high activity state and a low activity state. It is shown that, depending on the parameter values, periodic input can produce two completely different effects; it can either initiate the high activity state or switch it off. If it is assumed that the threshold $\theta_x$ increases with increased excitatory activity, there exists a range of $b$ for which periodic input can cause bursting activity in the system.

92C20Neural biology
92B20General theory of neural networks (mathematical biology)
34C25Periodic solutions of ODE
37G15Bifurcations of limit cycles and periodic orbits
34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
Full Text: DOI