zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Wave of chaos: New mechanism of pattern formation in spatio-temporal population dynamics. (English) Zbl 1035.92046
Summary: The dynamics of a simple prey-predator system is described by a system of two reaction-diffusion equations with biologically reasonable nonlinearities (logistic growth of the prey, Holling type II functional response of the predator). We show that, when the local kinetics of the system is oscillatory, for a wide class of initial conditions the evolution of the system leads to the formation of a non-stationary irregular pattern corresponding to spatio-temporal chaos. The chaotic pattern first appears inside a sub-domain of the system. This sub-domain then steadily grows with time and, finally, the chaotic pattern invades the whole space, displacing the regular pattern.

92D25Population dynamics (general)
92C15Developmental biology, pattern formation
37N25Dynamical systems in biology
Full Text: DOI
[1] Abraham, E. R.: The generation of plankton patchiness by turbulent stirring. Nature 391, 577-580 (1998)
[2] Comins, H. N.; Hassell, M. P.; May, R. M.: The spatial dynamics of host--parasitoid systems. J. anim. Ecol. 61, 735-748 (1992)
[3] Crank, J.: The mathematics of diffusion. (1975) · Zbl 0071.41401
[4] Davidson, F. A.: Chaotic wakes and other wave-induced behavior in a system of reaction-diffusion equations. Int. J. Bifurcation chaos 8, 1303-1313 (1998) · Zbl 0935.35068
[5] Denman, K. L.: Covariability of chlorophyll and temperature in the sea. Deep sea res. 23, 539-550 (1976)
[6] Dubois, D.: A model of patchiness for prey--predator plankton populations. Ecol. model. 1, 67-80 (1975)
[7] Dunbar, S. R.: Travelling waves in diffusive predator--prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J. Appl. math. 46, 1057-1078 (1986) · Zbl 0617.92020
[8] Ermentrout, B.; Chen, X.; Chen, Z.: Transition fronts and localized structures in bistable reaction-diffusion equations. Physica D 108, 147-167 (1997) · Zbl 0935.35069
[9] Fasham, M. J. R.: The statistical and mathematical analysis of plankton patchiness. Oceanogr. mar. Biol. annu. Rev. 16, 43-79 (1978)
[10] Flierl, G.; Grünbaum, D.; Levin, S.; Olson, D.: From individuals to aggregations: the interplay between behavior and physics. J. theor. Biol. 196, 397-454 (1999)
[11] Greene, C. H.; Widder, E. A.; Youngbluth, M. J.; Tamse, A.; Johnson, G. E.: The migration behavior, fine structure, and bioluminescent activity of krill sound-scattering layer. Limnol oceanogr. 37, 650-658 (1992)
[12] Hanski, I.: Metapopulation ecology. (1999)
[13] Hanski, I.; Gilpin, M. E.: Metapopulation biology. (1997) · Zbl 0913.92025
[14] Hosono, Y.: The minimal speed of travelling fronts for a diffusive Lotka--Volterra competition model. Bull. math. Biol. 60, 435-448 (1998) · Zbl 1053.92519
[15] Kaneko, K.: Theory and applications of coupled map lattices. (1993) · Zbl 0777.00014
[16] Kopell, N.; Howard, L. N.: Plane wave solutions to reaction-diffusion equations. Stud. appl. Math. 52, 291-328 (1973) · Zbl 0305.35081
[17] Levin, S. A.: Physical and biological scales and the modelling of predator--prey interactions in large marine ecosystems. Large marine ecosystems: patterns, processes and yields (1990)
[18] Levin, S. A.; Powell, T. M.; Steele, J. H.: Patch dynamics lecture notes in biomathematics. (1993)
[19] Mackas, D. L.; Boyd, C. M.: Spectral analysis of zooplankton spatial heterogeneity. Science 204, 62-64 (1979)
[20] Malchow, H.: Nonlinear plankton dynamics and pattern formation in an ecohydrodynamic model system. J. mar. Syst. 7, 193-202 (1996)
[21] Malchow, H.: Nonequilibrium spatio-temporal patterns in models of nonlinear plankton dynamics. Freshwater biol. 45, 239-251 (2000)
[22] Malchow, H.: Motional instabilities in predator--prey systems. J. theor. Biol. 204, 639-647 (2000)
[23] Malchow, H.; Shigesada, N.: Nonequilibrium plankton community structures in an ecohydrodynamic model system. Nonlinear process. Geophys. 1, 3-11 (1994)
[24] Medvinsky, A. B.; Tikhonov, D. A.; Tikhonova, I. A.; Petrovskii, S. V.; Malchow, H.: Biological factors underlying regularity and chaos in aquatic ecosystems: simple models of complex dynamics. J. biosc. (2000)
[25] Merkin, J. H.; Petrov, V.; Scott, S. K.; Showalter, K.: Wave-induced chemical chaos. Phys. rev. Lett. 76, 546-549 (1996)
[26] Murray, J. D.: Mathematical biology. (1989) · Zbl 0682.92001
[27] Nayfeh, A. H.; Balachandran, B.: Applied nonlinear dynamics. (1995) · Zbl 0848.34001
[28] Nisbet, R. M.; Gurney, W. S. C.: Modelling fluctuating populations. (1982) · Zbl 0593.92013
[29] Okubo, A.: Diffusion and ecological problems: mathematical models. (1980) · Zbl 0422.92025
[30] Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks and herds. Adv. biophys. 22, 1-94 (1986)
[31] Pascual, M.: Diffusion-induced chaos in a spatial predator--prey system. Proc. R. Soc. London B 251, 1-7 (1993)
[32] Pedley, T. J.; Kessler, J. O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. rev. Fluid mech. 24, 313-358 (1992) · Zbl 0825.76985
[33] Petrovskii, S. V.; Malchow, H.: A minimal model of pattern formation in a prey--predator system. Math. comput. Model. 29, 49-63 (1999) · Zbl 0990.92040
[34] Petrovskii, S. V.; Malchow, H.: Critical phenomena in plankton communities: KISS model revisited. Nonlinear anal.: real world appl. 1, 37-51 (2000) · Zbl 0996.92037
[35] Petrovskii, S. V.; Vinogradov, M. E.; Malchow, H.: A possible explanation of ”patchiness” in a plankton community. Trans. (Doklady) russ. Acad. sci. 367, 714-717 (1999)
[36] Petrovskii, S. V.; Vinogradov, M. E.; Morozov, A. Y.: Spatial-temporal dynamics of a localized populational ”burst” in a distributed prey--predator system. Oceanology 38, 881-890 (1998)
[37] Platt, T.: Local phytoplankton abundance and turbulence. Deep sea res. 19, 183-187 (1972)
[38] Powell, T. M.: Physical and biological scales of variability in lakes, estuaries and the coastal ocean. Ecological time series, 119-138 (1995)
[39] Powell, T. M.; Richerson, P. J.; Dillon, T. M.; Agee, B. A.; Dozier, B. J.; Godden, D. A.; Myrup, L. O.: Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe. Science 189, 1088-1090 (1975)
[40] Rovinsky, A. B.; Menzinger, M.: Chemical instability induced by a differential flow. Phys. rev. Lett. 69, 1193-1196 (1992)
[41] Scheffer, M.: Should we expect strange attractors behind plankton dynamics--and if so, should we bother?. J. plankton res. 13, 1291-1305 (1991)
[42] Segel, L. A.; Jackson, J. L.: Dissipative structure: an explanation and an ecological example. J. theor. Biol. 37, 545-559 (1972)
[43] Seuront, L.; Schmitt, F.; Lagadeuc, Y.; Schertzer, D.; Lovejoy, S.: Universal multifractal analysis as a tool to characterize multiscale intermittent patterns: example of phytoplankton distribution in turbulent coastal waters. J. plankton res. 21, 877-922 (1999)
[44] Sherratt, J. A.; Lewis, M. A.; Fowler, A. C.: Ecological chaos in the wake of invasion. Proc. math. Acad. sci. USA 92, 2524-2528 (1995) · Zbl 0819.92024
[45] Shigesada, N.; Kawasaki, K.: Biological invasions: theory and practice. (1997)
[46] Shigesada, J. A.; Kawasaki, K.; Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. popul. Biol. 30, 143-160 (1986) · Zbl 0591.92026
[47] Turing, A. M.: On the chemical basis of morphogenesis. Philos. trans. R. soc. London B 237, 37-72 (1952)
[48] Vinogradov, M. E.: Open-ocean ecosystems. Marine ecology (1983)
[49] Vinogradov, M. E.; Menshutkin, V. V.: E.d.goldbergthe sea: ideas and observations on progress in the study of the seas. The sea: ideas and observations on progress in the study of the seas (1977)
[50] Weber, L. H.; El-Sayed, S. Z.; Hampton, I.: The variance spectra of phytoplankton, krill and water temperature in the antarctic ocean south of africa. Deep sea res. 33, 1327-1343 (1986)