×

Construction of po-groups with quasi-divisors theory. (English) Zbl 1036.06009

Summary: A method is presented making it possible to construct po-groups with a strong theory of quasi-divisors of finite characteristic and with some prescribed properties as subgroups of restricted Hahn groups \(H(\Delta , \mathbb Z)\), where \(\Delta \) are finitely atomic root systems. Some examples of these constructions are presented.

MSC:

06F15 Ordered groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, M., Feil, T.: Lattice-ordered Groups. D. Reidl Publ. Co., Dordrecht, Tokyo, 1988. · Zbl 0636.06008
[2] Aubert, K.E.: Divisors of finite character. Annali di matem. pura ed appl. 33 (1983), 327-361. · Zbl 0533.20034
[3] Aubert, K.E.: Localizations dans les systémes d’idéaux. C.R.Acad. Sci. Paris 272 (1971), 465-468. · Zbl 0216.05001
[4] Borevich, Z. I. and Shafarevich, I. R.: Number Theory. Academic Press, New York, 1966. · Zbl 0145.04902
[5] Conrad, P.: Lattice Ordered Groups. Tulane University, 1970. · Zbl 0258.06011
[6] Chouinard, L. G.: Krull semigroups and divisor class group. Canad. J. Math. 33 (1981), 1459-1468. · Zbl 0453.13005
[7] Geroldinger, A., Močkoř, J.: Quasi-divisor theories and generalizations of Krull domains. J. Pure Appl. Algebra 102 (1995), 289-311. · Zbl 0853.13012
[8] Gilmer, R.: Multiplicative Ideal Theory. M. Dekker, Inc., New York, 1972. · Zbl 0248.13001
[9] Griffin, M.: Rings of Krull type. J. Reine Angew. Math. 229 (1968), 1-27. · Zbl 0173.03504
[10] Griffin, M.: Some results on v-multiplication rings. Canad. J. Math. 19 (1967), 710-722. · Zbl 0148.26701
[11] Jaffard, P.: Les systémes d’idéaux. Dunod, Paris, 1960. · Zbl 0101.27502
[12] Močkoř, J.: Groups of Divisibility. D. Reidl Publ. Co., Dordrecht, 1983. · Zbl 0528.13001
[13] Močkoř, J., Alajbegovic, J.: Approximation Theorems in Commutative Algebra. Kluwer Academic publ., Dordrecht, 1992. · Zbl 0772.13001
[14] Močkoř, J.,Kontolatou, A.: Groups with quasi-divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23-36. · Zbl 0794.06015
[15] Močkoř, J.,Kontolatou, A.: Divisor class groups of ordered subgroups. Acta Math. Inform. Univ. Ostraviensis 1 (1993). · Zbl 0849.06013
[16] Močkoř, J., Kontolatou, A.: Quasi-divisors theory of partly ordered groups. Grazer Math. Ber. 318 (1992), 81-98. · Zbl 0794.06014
[17] Močkoř, J.: \(t\)-Valuation and theory of quasi-divisors. To appear in J. Pure Appl. Algebra.
[18] Močkoř, J., Kontolatou, A.: Some remarks on Lorezen \(r\)-group of partly ordered group. Czechoslovak Math. J. 46(121) (1996), 537-552. · Zbl 0879.20031
[19] Močkoř, J.: Divisor class group and the theory of quasi-divisors. To appear. · Zbl 0955.06011
[20] Ohm, J.: Semi-valuations and groups of divisibility. Canad. J. Math. 21 (1969), 576-591. · Zbl 0177.06501
[21] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113-120. · Zbl 0177.03202
[22] Skula, L.: On \(c\)-semigroups. Acta Arith. 31 (1976), 247-257. · Zbl 0303.13014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.