×

A counterpart of the Verlinde algebra for the small quantum group. (English) Zbl 1036.17014

Let \(\mathfrak g\) be a semisimple complex Lie algebra, \(q\) a root of unity of odd order, and \(U_q^{\text{ fin}}({\mathfrak g})\) the associated small quantum group. The author shows that the ideal spanned by the characters of projective modules in the Grothendieck ring of the category of finite-dimensional modules over \(U_q^{\text{ fin}}({\mathfrak g})\) has a description parallel to that of the Verlinde algebra of the fusion category, with the character of the Steinberg module on the role of the identity.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] H. H. Andersen, Tensor products of quantized tilting modules , Comm. Math. Phys. 149 (1992), 149–159. · Zbl 0760.17004
[2] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of Quantum Groups at \(p\)th Root of Unity and of Semisimple Groups in Characteristic \(p\): Independence of \(p\) , Astérisque 220 , Soc. Math. France, Montrouge, 1994. · Zbl 0802.17009
[3] H. H. Andersen and J. Paradowski, Fusion categories arising from semisimple Lie algebras , Comm. Math. Phys. 169 (1995), 563–588. · Zbl 0827.17010
[4] H. H. Andersen, P. Polo, and K. X. Wen, Representations of quantum algebras , Invent. Math. 104 (1991), 1–59. · Zbl 0724.17012
[5] –. –. –. –., Injective modules for quantum algebras , Amer. J. Math. 114 (1992), 571–604. JSTOR: · Zbl 0755.17005
[6] B. Bakalov and A. Kirillov Jr., Lectures on Tensor Categories and Modular Functors , Univ. Lecture Ser. 21 , Amer. Math. Soc., Providence, 2001. · Zbl 0965.18002
[7] R. Bédard, The lowest two-sided cell for an affine Weyl group , Comm. Alg. 16 (1988), 1113–1132. · Zbl 0644.20029
[8] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, A certain category of \(\mathfrakg\)-modules (in Russian), Funktsional Anal. i Prilozhen. 10 , no. 2 (1976), 1–8.
[9] K. A. Brown and I. Gordon, The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras , Math. Z. 238 (2001), 733–779. · Zbl 1037.17011
[10] V. G. Drinfeld, Almost cocommutative Hopf algebras , Leningrad Math. J. 1 , no. 2 (1990), 321–342.
[11] M. Finkelberg, An equivalence of fusion categories , Geom. Funct. Anal. 6 (1996), 249–267. · Zbl 0860.17040
[12] J. E. Humphreys, Ordinary and Modular Representations of Chevalley Groups , Lecture Notes in Math. 528 , Springer, Berlin, 1976. · Zbl 0341.20037
[13] –. –. –. –., A construction of projective modules in the category \(\mathcal O\) of Bernstein-Gelfand-Gelfand , Indag. Math. 39 (1977), 301–303. · Zbl 0367.17005
[14] ——–, Reflection Groups and Coxeter Groups , Cambridge Stud. Adv. Math. 29 , Cambridge Univ. Press, Cambridge, 1990.
[15] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras , Invent. Math. 53 (1979), 165–184. · Zbl 0499.20035
[16] A. Lachowska, On the center of the small quantum group , J. Algebra 262 (2003), 313–331. · Zbl 1049.17011
[17] G. Lusztig, “Cells in affine Weyl groups” in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983) , Adv. Stud. Pure Math. 6 , North-Holland, Amsterdam, 1985, 255–287. · Zbl 0569.20032
[18] –. –. –. –., “Modular representations and quantum groups” in Classical Groups and Related Topics (Beijing, 1987) , Contemp. Math. 82 , Amer. Math. Soc., Providence, 1989, 59–77.
[19] –. –. –. –., Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra , J. Amer. Math. Soc. 3 (1990), 257–296. JSTOR: · Zbl 0695.16006
[20] ——–, Introduction to Quantum Groups , Progr. Math. 110 , Birkhäuser, Boston, 1993. · Zbl 0788.17010
[21] G. Lusztig and N. H. Xi, Canonical left cells in affine Weyl groups , Adv. in Math. 72 (1988), 284–288. · Zbl 0664.20028
[22] V. Lyubashenko, Invariants of \(3\)-manifolds and projective representations of mapping class groups via quantum groups at roots of unity , Comm. Math. Phys. 172 (1995), 467–516. · Zbl 0844.57016
[23] –. –. –. –., Modular transformations for tensor categories , J. Pure Appl. Algebra 98 (1995), 279–327. · Zbl 0823.18003
[24] V. Lyubashenko and S. Majid, Braided groups and quantum Fourier transform , J. Algebra 166 (1994), 506–528. · Zbl 0810.17006
[25] V. Ostrik, Tensor ideals in the category of tilting modules , Transform. Groups 2 , (1997), 279–287. · Zbl 0886.17013
[26] J. Paradowski, “Filtrations of modules over the quantum algebra” in Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, Penn., 1991) , Proc. Sympos. Pure Math. 56 , Part 2, Amer. Math. Soc., Providence, 1994, 93–108. · Zbl 0831.20059
[27] J. Y. Shi, A two-sided cell in an affine Weyl group , J. London Math. Soc. (2) 36 (1987), 407–420. · Zbl 0973.17012
[28] W. Soergel, Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln , Represent. Theory 1 (1997), 37–68. · Zbl 0886.05124
[29] –. –. –. –., Character formulas for tilting modules over Kac-Moody algebras , Represent. Theory 2 (1998), 432–448. · Zbl 0964.17018
[30] E. Verlinde, Fusion rules and modular transformations in \(2D\) conformal field theory , Nucl. Phys. B 300 (1988), 360–376. · Zbl 1180.81120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.