Abért, Miklós; Nikolov, Nikolay; Szegedy, Balázs Congruence subgroup growth of arithmetic groups in positive characteristic. (English) Zbl 1036.20043 Duke Math. J. 117, No. 2, 367-383 (2003). A new uniform bound for subgroup growth of a Chevalley group \(G\) over the local ring \(\mathbb{F}[\![t]\!]\) and also over local pro-\(p\) rings of higher Krull dimension is obtained. This is applied to bound the congruence subgroup growth of arithmetic groups over global fields of positive characteristic. This improves an upper bound obtained by Lubotzky. Reviewer: L. N. Vaserstein (University Park) Cited in 3 Documents MSC: 20H05 Unimodular groups, congruence subgroups (group-theoretic aspects) 20E07 Subgroup theorems; subgroup growth 20G30 Linear algebraic groups over global fields and their integers 17B45 Lie algebras of linear algebraic groups 20E18 Limits, profinite groups Keywords:congruence subgroup growth; arithmetic groups; analytic groups; numbers of open subgroups PDF BibTeX XML Cite \textit{M. Abért} et al., Duke Math. J. 117, No. 2, 367--383 (2003; Zbl 1036.20043) Full Text: DOI OpenURL References: [1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra , Addison-Wesley, Reading, Mass., 1969. · Zbl 0175.03601 [2] Y. Barnea and A. Shalev, Hausdorff dimension, pro-\(p\) groups, and Kac-Moody algebras , Trans. Amer. Math. Soc. 349 (1997), 5073–5091. JSTOR: · Zbl 0892.20020 [3] J. D. Dixon, M P F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-\(p\) Groups , 2d ed., Cambridge Stud. Adv. Math. 61 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0934.20001 [4] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups , Math. Surveys Monogr. 43 , Amer. Math. Soc., Providence, 1995. · Zbl 0834.20048 [5] A. Lubotzky, Subgroup growth and congruence subgroups , Invent. Math. 119 (1995), 267–295. · Zbl 0848.20036 [6] A. Lubotzky and D. Segal, Subgroup Growth , to appear in Progr. Math. 212 , Birkhäuser, Boston, 2003. · Zbl 1071.20033 [7] A. Lubotzky and A. Shalev, On some \(\Lambda\)-analytic pro-\(p\) groups , Israel J. Math. 85 (1994), 307–337. · Zbl 0819.20030 [8] L. Pyber, “Asymptotic results for simple groups and some applications” in Groups and Computation (New Brunswick, N.J., 1995), II , DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 28 , Amer. Math. Soc., Providence, 1997, 309–327. · Zbl 0887.20006 [9] A. Shalev, Growth functions, \(p\)-adic analytic groups, and groups of finite coclass , J. London Math. Soc. (2) 46 (1992), 111–122. · Zbl 0723.20017 [10] T. A. Springer and R. Steinberg, ”Conjugacy classes” in Seminar on Algebraic Groups and Related Finite Groups (Princeton, 1968/69) , Lecture Notes in Math. 131 , Springer, Berlin, 1970. [11] R. P. Stanley, Hilbert functions of graded algebras , Adv. in Math. 28 (1978), 57–83. · Zbl 0384.13012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.