zbMATH — the first resource for mathematics

Generalized hypergeometric functions associated with \(k\)-uniformly convex functions. (English) Zbl 1036.33003
Summary: For a certain linear operator which is defined by means of the Hadamard product (or convolution) with a generalized hypergeometric function, the authors aim at investigating various mapping and inclusion properties involving such subclasses of analytic and univalent functions as (for example) \(k\)-uniformly convex functions and \(k\)-starlike functions. Relevant connections of the definitions and results presented in this paper with those in several earlier works on the subject are also pointed out.

33C20 Generalized hypergeometric series, \({}_pF_q\)
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI
[1] Kanas, S.; Wiśniowska, A., Conic regions and k-uniformly convexity, J. comput. appl. math., 105, 327-336, (1999) · Zbl 0944.30008
[2] Kanas, S.; Wiśniowska, A., Conic regions and k-starlike functions, Rev. roumaine math. pures appl., 45, 647-657, (2000) · Zbl 0990.30010
[3] Kanas, S.; Srivastava, H.M., Linear operators associated with k-uniformly convex functions, Integral transform. spec. funct., 9, 121-132, (2000) · Zbl 0959.30007
[4] Goodman, A.W., On uniformly convex functions, Ann. polon. math., 56, 87-92, (1991) · Zbl 0744.30010
[5] Goodman, A.W., On uniformly starlike functions, J. math. anal. appl., 155, 364-370, (1991) · Zbl 0726.30013
[6] Ma, W.; Minda, D., Uniformly convex functions, Ann. polon. math., 57, 165-175, (1992) · Zbl 0760.30004
[7] Rønning, F., Uniformly convex functions and a corresponding class of starlike functions, (), 189-196 · Zbl 0805.30012
[8] Srivastava, H.M.; Mishra, A.K., Applications of fractional calculus to parabolic starlike and uniformly convex functions, Computers math. applic., 39, 3/4, 57-69, (2000) · Zbl 0948.30018
[9] Dixit, K.K.; Pal, S.K., On a class of univalent functions related to complex order, Indian J. pure appl. math., 26, 889-896, (1995) · Zbl 0835.30006
[10] Ponnusamy, S.; Rønning, F., Starlikeness properties for convolutions involving hypergeometric series, Ann. univ. mariae Curie-skłodowska sect. A, 52, 1-16, (1998) · Zbl 1008.30004
[11] Padmanabhan, K.S., On a certain class of functions whose derivatives have a positive real part in the unit disc, Ann. polon. math., 23, 73-81, (1970) · Zbl 0198.11101
[12] Caplinger, T.R.; Causey, W.M., A class of univalent functions, (), 357-361 · Zbl 0267.30010
[13] Duren, P.L., (), Grundlehren der Mathematischen Wissenschaften, Bd.
[14] Dziok, J.; Srivastava, H.M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. math. comput., 103, 1-13, (1999) · Zbl 0937.30010
[15] Srivastava, H.M.; Karlsson, P.W., Multiple Gaussian hypergeometric series, (1985), John Wiley and Sons New York, Halsted Press (Ellis Horwood Limited, Chichester) · Zbl 0552.33001
[16] Hohlov, Yu.E., Operators and operations in the class of univalent functions, Izv. vysš. Učebn. zaved. matematika, 10, 83-89, (1978), (in Russian)
[17] Owa, S.; Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. math., 39, 1057-1077, (1987) · Zbl 0611.33007
[18] Ponnusamy, S.; Vuorinen, M., Univalence and convexity properties for Gaussian hypergeometric functions, Rocky mountain J. math., 31, 327-353, (2001) · Zbl 0973.30017
[19] Ruscheweyh, St.; Singh, V., On the order of starlikeness of hypergeometric functions, J. math. anal. appl., 113, 1-11, (1986) · Zbl 0598.30021
[20] ()
[21] Silverman, H., Univalent functions with negative coefficients, (), 109-116 · Zbl 0311.30007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.