zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the number of positive solutions of nonlinear systems. (English) Zbl 1036.34032
This paper is devoted to the existence, multiplicity and nonexistence of positive solutions to boundary value problems on $[0,1]$ for a class of second-order differential systems where the main common operator is the one-dimensional $p$-Laplacian, $p> 1$. The author uses a fixed-point theorem in a cone due to {\it M. A. Krasnoselskij} [Positive solutions of operator equations. Groningen: The Netherlands: P. Noordhoff Ltd. (1964; Zbl 0121.10604)].

MSC:
34B18Positive solutions of nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] Agarwal, R.; Lu, H.; O’regan, D.: Eigenvalues and the one-dimensional p-Laplacian. J. math. Anal. appl. 266, 383-400 (2002) · Zbl 1002.34019
[2] Bandle, C.; Coffman, C. V.; Marcus, M.: Nonlinear elliptic problems in annular domains. J. differential equations 69, 322-345 (1987) · Zbl 0618.35043
[3] Ben-Naoum, A.; De Coster, C.: On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problem. Differential integral equations 10, 1093-1112 (1997) · Zbl 0940.35086
[4] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040
[5] Del Pino, M.; Elgueta, M.; Manasevich, R.: A homotopic deformation along p of a Leray--Schauder degree result and existence for (|u’|p-2u’)’+$f(t,u)=0, u(0)=u(T)=0$, p1. J. differential equations 80, 1-13 (1989) · Zbl 0708.34019
[6] Dunninger, D.; Wang, H.: Multiplicity of positive radial solutions for an elliptic system on an annulus. Nonlinear anal. 42, 803-811 (2000) · Zbl 0959.35051
[7] Dunninger, D.; Wang, H.: Existence and multiplicity of positive radial solutions for elliptic systems. Nonlinear anal. 29, 1051-1060 (1997) · Zbl 0885.35028
[8] Erbe, L.; Hu, S.; Wang, H.: Multiple positive solutions of some boundary value problems. J. math. Anal. appl. 184, 640-648 (1994) · Zbl 0805.34021
[9] Guo, D.; Lakshmikantham, V.: Nonlinear problems in abstract cones. (1988) · Zbl 0661.47045
[10] Krasnoselskii, M.: Positive solutions of operator equations. (1964)
[11] Lin, S. S.: On the existence of positive radial solutions for semilinear elliptic equations in annular domains. J. differential equations 81, 221-233 (1989) · Zbl 0691.35036
[12] Manasevich, R.; Mawhin, J.: The spectrum of p-Laplacian systems with various boundary conditions and applications. Adv. differential equations 5, 1289-1318 (2000) · Zbl 0992.34063
[13] Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. differential equations 109, 1-7 (1994) · Zbl 0798.34030
[14] H. Wang, On the structure of positive radial solutions for quasilinear equations in annular domains, Adv. Differential Equations, in press · Zbl 1042.34052
[15] H. Wang, On the existence, multiplicity and nonexistence of positive solutions of boundary value problems involving the p-Laplacian, submitted
[16] Wang, J.: The existence of positive solutions for the one-dimensional p-Laplacian. Proc. amer. Math. soc. 125, 2275-2283 (1997) · Zbl 0884.34032