zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Anisotropic Hardy spaces and wavelets. (English) Zbl 1036.42020
In this paper, motivated in part by the role of discrete groups of dilations in wavelet theory, the author introduces and investigates the anisotropic Hardy spaces associated with very general discrete groups of dilations. This formulation includes the classic isotropic Hardy space theory of {\it C. Fefferman} and {\it E. M. Stein} [Acta Math. 129, 137--193 (1972; Zbl 0257.46078)] and parabolic Hardy space theory of {\it A. P. Calderón} and {\it A. Torchinsky} [Adv. Math. 16, 1--64 (1975; Zbl 0315.46037) ibid. 24, 101--171 (1977; Zbl 0355.46021)]. Given a {\it dilation} $A$, that is, an $n \times n$ matrix all of whose eigenvalues $\lambda$ satisfy $\vert \lambda\vert >1$, define the radial maximal function $$ M^0_{\psi}f(x):= \sup \vert f \ast \psi_k\vert (x), \quad \text{ where} \quad \psi_k(x) := \mid \det A\vert ^{-k} \psi(A^{-k}x). $$ Here $\psi$ is any function in the Schwartz class with $\int \psi \ne 0$. For $0 < p < \infty$, the author introduces the corresponding anisotropic Hardy space $H^p_A$ as a space of tempered distributions $f$ such that $M^0_{\psi}f$ belongs to $L^p(R^n)$. Anisotropic Hardy spaces enjoy the basic properties of the classical Hardy spaces. For example, it turns out that this definition does not depend on the choice of the test function $\psi$ as long as $\int \psi \ne 0$. These spaces can be equivalently introduced in terms of grand, tangential or nontangential maximal functions. The author proves the Calderón--Zygmund decomposition, which enables him to show the atomic decomposition of $H^p_A$. As a consequence of atomic decomposition he obtains the description of the dual to $H^p_A$ in terms of Campanato spaces. He provides a description of the natural class of operators acting on $H^p_A$, i.e., Calderón--Zygmund singular integral operators. He also gives a full classification of dilations generating the same space $H^p_A$ in terms of spectral properties of $A$. In the second part of the paper, the author shows that for every dilation $A$ preserving some lattice and satisfying a particular expansiveness property there is a multiwavelet in the Schwartz class. He also shows that for a large class of dilations (lacking this property) all multiwavelets must be combined minimally supported in frequency, and thus are far from being regular. He shows that $r$--regular (tight frame) multiwavelets form an unconditional basis (tight frame) for the anisotropic Hardy space $H^p_A$. He also describes the sequence space characterizing wavelet coefficients of elements of the anisotropic Hardy space.

42B30$H^p$-spaces (Fourier analysis)
42C40Wavelets and other special systems
42B20Singular and oscillatory integrals, several variables
42B25Maximal functions, Littlewood-Paley theory
46F05Topological linear spaces of test functions, distributions and ultradistributions