Einsiedler, Manfred; Everest, Graham; Ward, Thomas Primes in sequences associated to polynomials (after Lehmer). (English) Zbl 1037.11014 LMS J. Comput. Math. 3, 125-139 (2000). Summary: In a paper of 1933, D. H. Lehmer [Ann. Math. (2) 34, 461-479 (1933; Zbl 0007.19904)] continued Pierce’s study of integral sequences associated to polynomials generalizing the Mersenne sequence. He developed divisibility criteria, and suggested that prime apparition in these sequences - or in closely related sequences - would be denser if the polynomials were close to cyclotomic, using a natural measure of closeness. We review briefly some of the main developments since Lehmer’s paper, and report on further computational work on these sequences. In particular, we use Mossinghoff’s collection of polynomials with smallest known measure to assemble evidence for the distribution of primes in these sequences predicted by standard heuristic arguments. The calculations lend weight to standard conjectures about Mersenne primes, and the use of polynomials with small measure permits much larger numbers of primes to be generated than in the Mersenne case. Cited in 3 Documents MSC: 11C08 Polynomials in number theory 11A51 Factorization; primality Citations:Zbl 0007.19904 × Cite Format Result Cite Review PDF Full Text: DOI Link Online Encyclopedia of Integer Sequences: a(n+6) = -a(n+5) + a(n+4) + 3a(n+3) + a(n+2) - a(n+1) - a(n). a(n) = sign(n) if abs(n)<=3. The periodic point counting sequence for the toral automorphism given by the polynomial of (conjectural) smallest Mahler measure. The map is x -> Ax mod 1 for x in [0,1)^10, where A is the companion matrix for the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1. Number of orbits of length n under the automorphism of the 3-torus whose periodic points are counted by A001945. Number of orbits of length n in map whose periodic points are A059928. A divisibility sequence derived from Lehmer’s polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1. Square root of the terms in A059928. References: [1] DOI: 10.1112/blms/3.2.169 · Zbl 0235.12003 · doi:10.1112/blms/3.2.169 [2] Knopfmacher, J. Reine Angew. Math. 277 pp 45– (1975) [3] Everest, Heights of polynomials and entropy in algebraic dynamics (1999) · Zbl 0919.11064 · doi:10.1007/978-1-4471-3898-3 [4] DOI: 10.1090/S0894-0347-97-00228-2 · Zbl 0913.11027 · doi:10.1090/S0894-0347-97-00228-2 [5] Chothi, J. Reine Angew. Math. 489 pp 99– (1997) [6] Boyd, Experiment. Math. 7 pp 37– (1998) · Zbl 0932.11069 · doi:10.1080/10586458.1998.10504357 [7] DOI: 10.2307/2008368 · doi:10.2307/2008368 [8] Boyd, Canad. Math. Bull. 24 pp 453– (1981) · Zbl 0474.12005 · doi:10.4153/CMB-1981-069-5 [9] DOI: 10.2307/2006402 · Zbl 0447.12002 · doi:10.2307/2006402 [10] DOI: 10.2307/2007169 · JFM 46.0194.03 · doi:10.2307/2007169 [11] DOI: 10.1090/S0025-5718-98-01007-2 · Zbl 0909.12003 · doi:10.1090/S0025-5718-98-01007-2 [12] DOI: 10.1090/S0025-5718-98-01006-0 · Zbl 0918.11056 · doi:10.1090/S0025-5718-98-01006-0 [13] DOI: 10.2307/2007383 · Zbl 0507.10005 · doi:10.2307/2007383 [14] DOI: 10.1112/S0025579300001637 · Zbl 0099.25003 · doi:10.1112/S0025579300001637 [15] DOI: 10.1007/BF01231517 · Zbl 0774.22002 · doi:10.1007/BF01231517 [16] DOI: 10.1017/S0143385700009573 · Zbl 0507.58034 · doi:10.1017/S0143385700009573 [17] DOI: 10.2307/1968172 · Zbl 0007.19904 · doi:10.2307/1968172 [18] Landau, Handbuch der Lehre von der Verteilung der Primzahlen (1953) · Zbl 0051.28007 [19] Rosen, J. Ramanujan Math. Soc. 14 pp 1– (1999) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.