Lapid, Erez M.; Rogawski, Jonathan D. Periods of Eisenstein series: the Galois case. (English) Zbl 1037.11033 Duke Math. J. 120, No. 1, 153-226 (2003). In this paper the periods of Eisenstein series are studied in the following case. Let \(H\) be a connected reductive group over a number field \(F\) and let \(G = \text{Res}_{E/F}\,H\), where \(E/F\) is a quadratic extension. The period of an automorphic form on \(G\) with respect to \(H\) is defined as a regularized integral. The main result of the paper is an expression for the period of a cuspidal Eisenstein series as a sum of intertwining periods (the name of these functionals is explained in H. Jacquet, E. Lapid and J. Rogawski [J. Am. Math. Soc. 12, 173–240 (1999; Zbl 1012.11044)] ). That sum of intertwining periods has a meromorphic continuation and satisfies a set of functional equations. From the main result one also deduces a relative analogue of the Maass-Selberg relations. Reviewer: J. G. M. Mars (Utrecht) Cited in 3 ReviewsCited in 30 Documents MSC: 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 11F72 Spectral theory; trace formulas (e.g., that of Selberg) Keywords:connected reductive group; cuspidal Eisenstein series; sum of intertwining periods; Maass-Selberg relations Citations:Zbl 1012.11044 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. G. Arthur, A trace formula for reductive groups, I: Terms associated to classes in \({G}({\mathbf{Q}})\) , Duke Math. J. 45 (1978), 911–952. · Zbl 0499.10032 · doi:10.1215/S0012-7094-78-04542-8 [2] –. –. –. –., A trace formula for reductive groups, II: Applications of a truncation operator , Compositio Math. 40 (1980), 87–121. · Zbl 0499.10033 [3] –. –. –. –., The trace formula in invariant form , Ann. of Math. (2) 114 (1981), 1–74. · Zbl 0495.22006 · doi:10.2307/1971376 [4] A. Ash, D. Ginzburg, and S. Rallis, Vanishing periods of cusp forms over modular symbols , Math. Ann. 296 (1993), 709–723. · Zbl 0786.11028 · doi:10.1007/BF01445131 [5] W. Casselman, Extended automorphic forms on the upper half plane , Math. Ann. 296 (1993), 755–762. · Zbl 0786.11025 · doi:10.1007/BF01445135 [6] S. Gelbart, H. Jacquet, and J. Rogawski, Generic representations for the unitary group in three variables , Israel J. Math. 126 (2001), 173–237. \CMP1 882 037 · Zbl 1007.22022 · doi:10.1007/BF02784154 [7] J. Guo, On the positivity of the central critical values of automorphic \({L}\)-functions for \({\mathrm {G}{L}}(2)\) , Duke Math. J. 83 (1996), 157–190. · Zbl 0861.11032 · doi:10.1215/S0012-7094-96-08307-6 [8] H. Jacquet, Sur un résultat de Waldspurger , Ann. Sci. École Norm. Sup. (4) 19 (1986), 185–229. · Zbl 0605.10015 [9] –. –. –. –., The continuous spectrum of the relative trace formula for \({\mathrm {G}{L}}(3)\) over a quadratic extension , Israel J. Math. 89 (1995), 1–59. · Zbl 0818.11025 · doi:10.1007/BF02808192 [10] –. –. –. –., “Automorphic spectrum of symmetric spaces” in Representation Theory and Automorphic Forms (Edinburgh, 1996) , Proc. Sympos. Pure Math. 61 , Amer. Math. Soc., Providence, 1997, 443–455. · Zbl 0888.11020 [11] H. Jacquet, E. Lapid, and J. Rogawski, Periods of automorphic forms , J. Amer. Math. Soc. 12 (1999), 173–240. JSTOR: · Zbl 1012.11044 · doi:10.1090/S0894-0347-99-00279-9 [12] H. Jacquet and Y. Ye, Une remarque sur le changement de base quadratique , C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 671–676. · Zbl 0715.11026 [13] –. –. –. –., Distinguished representations and quadratic base change for \(\GL(3)\) , Trans. Amer. Math. Soc. 348 (1996), 913–939. JSTOR: · Zbl 0861.11033 · doi:10.1090/S0002-9947-96-01549-8 [14] R. E. Kottwitz, Base change for unit elements of Hecke algebras , Compositio Math. 60 (1986), 237–250. [15] –. –. –. –., Tamagawa numbers , Ann. of Math. (2) 127 (1988), 629–646. JSTOR: · Zbl 0678.22012 · doi:10.2307/2007007 [16] K. F. Lai, Tamagawa number of reductive algebraic groups , Compositio Math. 41 (1980), 153–188. · Zbl 0416.20035 [17] R. P. Langlands, “The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups” in Algebraic Groups and Discontinuous Subgroups (Boulder, Colo., 1965) , Proc. Sympos. Pure Math. 9 , Amer. Math. Soc., Providence, 1966, 143–148. · Zbl 0218.20041 [18] E. M. Lapid, On the fine spectral expansion of Jacquet’s relative trace formula , preprint, 2003, · Zbl 1195.11071 [19] E. Lapid and J. Rogawski, Stabilization of periods of Eisenstein series and Bessel distributions on \(\GL(3)\) relative to \({\mathrm {U}}(3)\) , Doc. Math. 5 (2000), 317–350. · Zbl 0983.11022 [20] C. Moeglin \and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series , Cambridge Tracts in Math. 113 , Cambridge Univ. Press, Cambridge, 1995. · Zbl 0846.11032 [21] T. Ono, “On Tamagawa numbers” in Algebraic Groups and Discontinuous Subgroups (Boulder, Colo., 1965) , Proc. Sympos. Pure Math. 9 , Amer. Math. Soc., Providence, 1966, 122–132. [22] J.-P. Serre, Cohomologie galoisienne , 5th ed., Lecture Notes in Math. 5 , Springer, Berlin, 1994. [23] T. A. Springer, “Reductive groups” in Automorphic Forms, Representations and \(L\)-Functions (Corvallis, Ore., 1977), Part 1 , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 3–27. [24] –. –. –. –., “Some results on algebraic groups with involutions” in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983) , Adv. Stud. Pure Math. 6 , North-Holland, Amsterdam, 1985, 525–543. · Zbl 0628.20036 [25] A. Weil, Adeles and Algebraic Groups , Progr. Math. 23 , Birkhäuser, Boston, 1982. · Zbl 0493.14028 [26] Y. Ye, Kloosterman integrals and base change for \({\mathrm {G}{L}}(2)\) , J. Reine Angew. Math. 400 (1989), 57–121. · Zbl 0798.11024 · doi:10.1215/S0012-7094-93-07107-4 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.