Benoist, Yves Divisible convex sets. II. (Convexes divisibles. II.) (French) Zbl 1037.22022 Duke Math. J. 120, No. 1, 97-120 (2003). Summary: “A properly convex open cone in \(\mathbb{R}^m\) is called divisible if there exists a discrete subgroup \(\Gamma\) of \(\text{GL} (\mathbb{R}^m)\) preserving \(C\) such that the quotient \(\Gamma\setminus C\) is compact. We describe the Zariski closure of such a group \(\Gamma\). We show that if \(C\) is divisible but is neither a product nor a symmetric cone, then \(\Gamma\) is Zariski dense in \(\text{GL} (\mathbb{R}^m)\).” (Part I in C. R. Acad. Sci., Paris, Ser. I, Math. 332, 387–390 (2001; Zbl 1010.37014)]. Cited in 3 ReviewsCited in 25 Documents MSC: 22E40 Discrete subgroups of Lie groups 20H15 Other geometric groups, including crystallographic groups 53A20 Projective differential geometry 57S30 Discontinuous groups of transformations Citations:Zbl 1010.37014 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] H. Abels, Parallelizability of proper actions, global \(K\)-slices and maximal compact subgroups , Math. Ann. 212 (1974/75), 1–19. · Zbl 0276.57019 · doi:10.1007/BF01343976 [2] –. –. –. –., Some topological aspects of proper group actions; noncompact dimension of groups , J. London Math. Soc. (2) 25 (1982), 525–538. · Zbl 0458.54029 · doi:10.1112/jlms/s2-25.3.525 [3] R. Benedetti \et J.-J. Risler, Real Algebraic and Semi-Algebraic Sets , Actualités Math., Hermann, Paris, 1990. · Zbl 0694.14006 [4] Y. Benoist, Automorphismes des cônes convexes , Invent. Math. 141 (2000), 149–193. · Zbl 0957.22008 · doi:10.1007/s002220000067 [5] –. –. –. –., Convexes divisibles , C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 387–390. · Zbl 1010.37014 · doi:10.1016/S0764-4442(01)01878-X [6] ——–, Convexes divisibles I , preprint, 2001, · Zbl 1010.37014 · doi:10.1016/S0764-4442(01)01878-X [7] J.-P. Benzécri, Sur les variétés localement affines et localement projectives , Bull. Soc. Math. France 88 (1960), 229–332. · Zbl 0098.35204 [8] A. Borel, Compact Clifford-Klein forms of symmetric spaces , Topology 2 (1963), 111–122. · Zbl 0116.38603 · doi:10.1016/0040-9383(63)90026-0 [9] H. Braun \et M. Koecher, Jordan-Algebren , Grundlehren Math. Wiss. 128 , Springer, Berlin, 1966. · Zbl 0145.26001 [10] S. Choi \et W. M. Goldman, Convex real projective structures on closed surfaces are closed , Proc. Amer. Math. Soc. 118 (1993), 657–661. · Zbl 0810.57005 · doi:10.2307/2160352 [11] J. Faraut \et A. Korányi, Analysis on symmetric cones , Oxford Math. Monogr., Oxford Univ. Press, New York, 1994. · Zbl 0841.43002 [12] W. M. Goldman, Convex real projective structures on compact surfaces , J. Differential Geom. 31 (1990), 791–845. · Zbl 0711.53033 [13] K. Jo, Quasi-homogeneous domains and convex affine manifolds , · Zbl 1039.57006 · doi:10.1016/S0166-8641(03)00106-8 [14] D. Johnson \et J. J. Millson, “Deformation spaces associated to compact hyperbolic manifolds” dans Discrete Groups in Geometry and Analysis , Progr. Math. 67 , Birkhaüser, Boston, 1984, 48–106. · Zbl 0664.53023 [15] M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications , Lecture Notes in Math. 1710 , Springer, Berlin, 1999. · Zbl 1072.17513 [16] J.-L. Koszul, Déformations des connexions localement plates , Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 103–114. · Zbl 0167.50103 · doi:10.5802/aif.279 [17] H. Kraft, P. Slodowy, \et T. A. Springer, eds., Algebraic Transformation Groups and Invariant Theory , DMV Sem. 13 , Birkhaüser, Basel, 1989. · Zbl 0682.00008 [18] N. H. Kuiper, “On convex locally-projective spaces” dans Convegno Internazionale di Geometria Differenziale (Italie, 1953) , Edizione Cremonese, Rome, 1954, 200–213. · Zbl 0057.14303 [19] G. A. Margulis \et E. B. Vinberg, Some linear groups virtually having a free quotient , J. Lie Theory 10 (2000), 171–180. · Zbl 0958.22008 [20] H. Saito, On a classification of prehomogeneous vector spaces over local and global fields , J. Algebra 187 (1997), 510–536. · Zbl 0874.14046 · doi:10.1006/jabr.1996.6807 [21] M. Sato \et T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariant , Nagoya Math. J. 65 (1977), 1–155. · Zbl 0321.14030 [22] J. Vey, Sur les automorphismes affines des ouverts convexes dans les espaces numériques , C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A249–A251. · Zbl 0186.55701 [23] –. –. –. –., Sur les automorphismes affines des ouverts convexes saillants , Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 641–665. · Zbl 0206.51302 [24] E. B. Vinberg, The theory of convex homogeneous cones , Transl. Mosc. Math. Soc. (1963), 340–403. · Zbl 0138.43301 [25] –. –. –. –., The structure of the group of automorphisms of a homogeneous convex cone , Transl. Mosc. Math. Soc. (1965), 63–93. · Zbl 0311.17008 [26] E. Vinberg \et V. Kac, Quasi-homogeneous cones , Math. Notes 1 (1967), 231–235. · Zbl 0163.16902 · doi:10.1007/BF01098890 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.