×

zbMATH — the first resource for mathematics

On the behaviour of solutions of a class of third order difference equations. (English) Zbl 1037.39001
The authors consider structure of the solution space of certain third-order difference equations, keeping oscillatory/nonoscillatory behaviour of the solutions in view.

MSC:
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Burnside W.S., The Theory of Equations,, 3. ed. (1979) · JFM 01.0191.01
[2] Gregus M., Third Order Linear Differential Equations (1987) · doi:10.1007/978-94-009-3715-4
[3] Hartman P., Trans. Am. Math. Soc. 246 pp 1– (1987)
[4] DOI: 10.1016/0898-1221(94)00101-4 · Zbl 0809.39005 · doi:10.1016/0898-1221(94)00101-4
[5] Kelley W.G., Difference Equations: An Introduction withApplications (1991)
[6] DOI: 10.1080/10236199808808159 · Zbl 0921.39002 · doi:10.1080/10236199808808159
[7] Mickens R.E., Difference Equations (1987) · Zbl 1235.70006
[8] DOI: 10.1080/10236190008808213 · Zbl 0963.39009 · doi:10.1080/10236190008808213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.