×

\(L^p\)-estimates for singular integrals with kernels belonging to certain block spaces. (English) Zbl 1037.42015

Let \(\mathbb{R}^n\), \(n\geq 2\), be the \(n\)-dimensional Euclidean space and \(S^{n-1}\) be the unit sphere in \(\mathbb{R}^n\) equipped with the normalized Lebesgue measure \(d\sigma\). Let \(\Omega\) be a homogeneous function of degree 0 satisfying \(\Omega\in L^1(S^{n-1})\) and \(\int_{S^{n-1}} \Omega(y')\, d\sigma(y')= 0\), where \(y'= y/| y|\in S^{n-1}\) for any \(y\neq 0\). For \(\gamma> 0\), let \(\Delta_\gamma\) denote the set of all measurable functions \(h\) on \(\mathbb{R}^+\) such that \[ \sup_{R> 0} R^{-1} \int_0^R | h(t)|^\gamma\, dt<\infty. \] In this paper the authors study a singular integral operator defined by \[ Tf(x)= \text{p.v. }\int_{\mathbb{R}^n} f(x-{\mathcal P}(u))K(u)\, du \] where \(K(x)=| x|^{-n} \Omega(x) h(| x|)\) and \({\mathcal P}= (P_1,\dots, P_m)\) is a mapping from \(\mathbb{R}^n\) to \(\mathbb{R}^m\) with each \(P_j\) being a polynomial function.
Let \(B_q^{\mu,\nu} (S^{n-1})\) be the block spaces defined in the book by S. Z. Lu, M. H. Taibleson and G. Weiss [“Spaces generated by blocks”, Beijing Normal University Press, Beijing (1989), per bibl.]. The main theorem of this paper is the following
Theorem. If \(\Omega\) belongs to the block space \(B_q^{0,0} (S^{n-1})\), \(q>1\), \(h\in \Delta_\gamma\) for some \(\gamma> 1\), then for any \(p\) satisfying \(| 1/p- 1/2|\leq \min\{1/2, 1/\gamma'\}\), there exists a constant \(C\) independent of the coefficients of \({\mathcal P}\) such that \(\| Tf\|_{L^p(\mathbb{R}^m)}\leq C\| f\|_{L^p(\mathbb{R}^m)}\).
The authors also obtain a similar boundedness result for the associated maximal operator.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B15 Multipliers for harmonic analysis in several variables
42B25 Maximal functions, Littlewood-Paley theory

References:

[1] Al-Hasan, A.: A note on a maximal singular integral. Funct. Differ. Equ. 5 (1998), 309-314. · Zbl 1045.45011
[2] Al-Hasan, A. and Fan, D.: A singular integral operator related to block spaces. Hokkaido Math. J. 28 (1999), 285-299. · Zbl 0935.42009
[3] Calderón, A.P. and Zygmund, A.: On singular integrals. Amer. J. Math. 78 (1956), 289-309. · Zbl 0072.11501 · doi:10.2307/2372517
[4] Chen, L.: On a singular integral. Studia Math. 85 (1987), 61-72. · Zbl 0622.47030
[5] Coifman, R. and Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83 (1977), 569-645. · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[6] Connett, W.C.: Singular integrals near L1. Proc. Sympos. Pure. Math. (S. Wainger and G. Weiss, eds.) 35, Amer. Math. Soc., Providence. RI, 1979, 163-165. · Zbl 0431.42008
[7] Duoandikoetxea, J. and Rubio de Francia, J.L.: Maximal func- tions and singular integral operators via Fourier transform estimates. In- vent. Math. 84 (1986), 541-561. · Zbl 0568.42012 · doi:10.1007/BF01388746
[8] Fan, D., Guo, K. and Pan, Y.: Lp estimates for singular integrals asso- ciated to homogeneous surfaces. J. Reine Angew. Math. 542 (2002), 1-22. · Zbl 0983.42007 · doi:10.1515/crll.2002.006
[9] Fan, D., Guo, K. and Pan, Y.: Singular integrals with rough kernels on product spaces. Hokkaido Math. J. 28 (1999), 435-460. · Zbl 0945.42007
[10] Fan, D. and Pan, Y.: Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119 (1997), 799-839. · Zbl 0899.42002 · doi:10.1353/ajm.1997.0024
[11] Fefferman, R.: A note on singular integrals. Proc. Amer. Math. Soc. 74 (1979), 266-270. · Zbl 0417.42009 · doi:10.2307/2043145
[12] Keitoku, M. and Sato, E.: Block spaces on the unit sphere in Rn. Proc. Amer. Math. Soc. 119 (1993), 453-455. · Zbl 0794.42012 · doi:10.2307/2159928
[13] Lu, S., Taibleson, M. and Weiss, G.: Spaces Generated by Blocks. Beijing Normal University Press, Beijing, 1989.
[14] Meyer, Y., Taibleson, M. and Weiss, G.: Some functional analytic properties of the space Bq generated by blocks. Indiana Univ. Math. J. 34 (1985), 493-515. · Zbl 0552.42002 · doi:10.1512/iumj.1985.34.34028
[15] Namazi, J.: A singular integral. Proc. Amer. Math. Soc. 96 (1986), 421-424. · Zbl 0585.42017 · doi:10.2307/2046587
[16] Ricci, F. and Weiss, G.: A characterization of H1(\Sigma n - 1). Proc. Sym- pos. Pure Math (S. Wainger and G. Weiss, eds.) 35. Amer. Math. Soc., Providence, RI, 289-294. · Zbl 0423.30028
[17] Soria, F.: Characterizations of classes of functions generated by blocks and associated Hardy spaces. Indiana Univ. Math. J. 34 (1985), 463-492. · Zbl 0573.42015 · doi:10.1512/iumj.1985.34.34027
[18] Stein, E.M.: Singular integrals and Differentiability Properties of Func- tions. Princeton University Press, Princeton, NJ, 1970. · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.