# zbMATH — the first resource for mathematics

Connections with irreducible holonomy representations. (English) Zbl 1037.53035
A subgroup of a linear group is called a Berger group if it satisfies all algebraic conditions for being the holonomy group of a torsion free affine connection. These conditions were introduced by Berger who also produced the list of such groups. Famous problems of differential geometry were to establish which groups from this list are realized by the holonomy groups of such connections and, in particular, which Berger groups are realized by torsion free connections compatible with a Riemannian metric. Now both problems are solved and the final solution to the classification problem for irreducible holonomies of torsion free affine connections was obtained by S. Merkulov and the author [Ann. Math. (2), 150, 77–149 (1999; Zbl 0992.53038); S. A. Heggett (ed.) et al., The geometric universe, Oxford University Press, 395–402 (1998; Zbl 0907.53018)]. It appears that all irreducible Berger groups are realized by the holonomy groups. This paper contains another proof of this classification theorem which is based on the classical representation theory.

##### MSC:
 53C29 Issues of holonomy in differential geometry 53C05 Connections, general theory 53C28 Twistor methods in differential geometry 53C17 Sub-Riemannian geometry 17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
##### Keywords:
holonomy groups; representation theory; Berger group
Full Text:
##### References:
 [1] Alekseevskii, D.V, Riemannian spaces with unusual holonomy groups, Funct. anal. appl., 2, 97-105, (1968) [2] Ambrose, W; Singer, I.M, A theorem on holonomy, Trans. amer. math. soc., 75, 428-443, (1953) · Zbl 0052.18002 [3] Baston, R.J; Eastwood, M.G, The Penrose transform, its interaction with representation theory, (1989), Oxford Univ. Press Oxford · Zbl 0726.58004 [4] Berger, M, Sur LES groupes d’holonomie des variétés à connexion affine et de variétés riemanniennes, Bull. soc. math. France, 83, 279-330, (1955) · Zbl 0068.36002 [5] Berger, M, LES espaces symétriques noncompacts, Ann. sci. ecole norm. sup., 74, 85-177, (1957) · Zbl 0093.35602 [6] Besse, A.L, Einstein manifolds, Ergebnisse der Mathematik und ihrer grenzgebiete, 3, (1987), Springer-Verlag Berlin/New York [7] Borel, A, Some remarks about Lie groups transitive on spheres and tori, Bull. AMS, 55, 580-587, (1949) · Zbl 0034.01603 [8] Borel, A, Le plan projectif des octaves et LES sphères comme espaces homogènes, C. R. acad. sci. Paris, 230, 1378-1380, (1950) · Zbl 0041.52203 [9] Borel, A; Lichnerowicz, A, Groupe d’holonomie des variétés riemanniennes, C. R. acad. sci. Paris, 234, 1835-1837, (1952) · Zbl 0046.39801 [10] Bryant, R, A survey of Riemannian metrics with special holonomy groups, Proc. ICM Berkeley, (1987), Amer. Math. Soc Providence, p. 505-514 [11] Bryant, R, Metrics with exceptional holonomy, Ann. math., 126, 525-576, (1987) · Zbl 0637.53042 [12] Bryant, R, Two exotic holonomies in dimension four, path geometries, and twistor theory, Proc. sympos. pure math., 53, 33-88, (1991) · Zbl 0758.53017 [13] Bryant, R, Classical, exceptional, and exotic holonomies A status report, Actes de la table ronde de Géométrie différentielle en l’honneur de marcel berger, Collection SMF Séminaires and congrès 1, (1996), Soc. Math. de France, p. 93-166 · Zbl 0882.53014 [14] R. Bryant, Recent advances in the theory of holonomy, presented at the Seminaire Bourbaki (June 1999), Asterisque, available at, http://xxx.uni-augsburg.de/abs/math/9910059. [15] Bryant, R; Chern, S; Gardner, R; Goldschmidt, H; Griffith, P, Exterior differential systems, (1991), Springer-Verlag Berlin/New York [16] Calabi, E, Métriques kähleriennes et fibrés holomorphes, Ann. ecole norm. sup., 12, 269-294, (1979) · Zbl 0431.53056 [17] Cartan, É, LES groupes de transformations continus, infinis, simples, Ann. ecole norm., 26, 93-161, (1909) · JFM 40.0193.02 [18] Cartan, É, Sur LES variétésà connexion affine et la théorie de la relativité généralisée, I, II, Ann. sci. ecole norm. sup., 40, 325-412, (1923) · JFM 49.0542.02 [19] Cartan, É, Sur une classe remarquable d’espaces de Riemann, Bull. soc. math. France, 54, 214-264, (1926) · JFM 53.0390.01 [20] Cartan, É, LES groupes d’holonomie des espaces généralisés, Acta. math., 48, 1-42, (1926) · JFM 52.0723.01 [21] Chi, Q.-S; Merkulov, S.A; Schwachhöfer, L.J, On the existence of infinite series of exotic holonomies, Invent. math., 126, 391-411, (1996) · Zbl 0866.53013 [22] Chi, Q.-S; Merkulov, S.A; Schwachhöfer, L.J, Exotic holonomies E(a)7, Int. J. math., 8, 583-594, (1997) · Zbl 0988.53022 [23] Chi, Q.-S; Schwachhöfer, L.J, Exotic holonomy on moduli spaces of rational curves, Differential geom. appl., 8, 105-134, (1998) · Zbl 0991.53030 [24] Fulton, W; Harris, J, Representation theory, Graduate texts in mathematics, 129, (1996), Springer-Verlag Berlin/New York [25] Guillemin, V, The integrability problem for G-structures, Trans. amer. math. soc., 116, 544-560, (1965) · Zbl 0178.55702 [26] Helgason, S, Differential geometry and symmetric spaces, (1978), Academic Press New York/London · Zbl 0122.39901 [27] Hano, J; Ozeki, H, On the holonomy groups of linear connections, Nagoya math. J., 10, 97-100, (1956) · Zbl 0070.38901 [28] Humphreys, J.E, Introduction to Lie algebras and representation theory, (1987), Springer-Verlag Berlin/New York · Zbl 0254.17004 [29] Joyce, D, Compact Riemannian 7-manifolds with holonomy G2, I, II, J. differential geometry, 43, 291-375, (1996) · Zbl 0861.53023 [30] Kobayashi, S; Nagano, K, On filtered Lie algebras and geometric structures, II, J. math. mech., 14, 513-521, (1965) · Zbl 0163.28103 [31] Kobayashi, S; Nomizu, K, Foundations of differential geometry, (1963), Wiley-Interscience New York · Zbl 0119.37502 [32] Libermann, P; Marle, C.-M, Symplectic geometry and analytic mechanics, Mathematics and its applications, (1987), Reidel Dordrecht [33] Merkulov, S.A, Moduli of compact complex Legendre submanifolds of complex contact manifolds, Math. res. lett., 1, 717-727, (1994) · Zbl 0831.53032 [34] Merkulov, S.A, Existence and geometry of Legendre moduli spaces, Math. Z., 226, 211-265, (1997) · Zbl 0904.53047 [35] Merkulov, S.A, Moduli spaces of compact complex submanifolds of complex fibered manifolds, Math. proc. Cambridge philos. soc., 118, 71-91, (1995) · Zbl 0845.32023 [36] Merkulov, S.A, Geometry of Kodaira moduli spaces, Proc. amer. math. soc., 124, 1499-1506, (1996) · Zbl 0852.32010 [37] Merkulov, S.A; Schwachhöfer, L.J, Classification of irreducible holonomies of torsion free affine connections, Ann. math., 150, 77-149, (1999) · Zbl 0992.53038 [38] Merkulov, S.A; Schwachhöfer, L.J, Twistor solution of the holonomy problem, (), 395-402 · Zbl 0907.53018 [39] Montgomery, D; Samelson, H, Transformation groups of spheres, Ann. math., 44, 454-470, (1943) · Zbl 0063.04077 [40] Montgomery, D; Samelson, H, Groups transitive on the n-dimensional torus, Bull. amer. math. soc., 49, 455-456, (1943) · Zbl 0063.04078 [41] Nijenhuis, A, On the holonomy group of linear connections, Indag math., 15, 233-249, (1953) · Zbl 0051.13203 [42] Nijenhuis, A, A note on infinitesimal holonomy groups, Nagoya math. J., 12, 145-147, (1957) · Zbl 0093.35601 [43] Ochiai, T, Geometry associated with semi-simple flat homogeneous spaces, Trans. amer. math. soc., 152, 159-193, (1970) · Zbl 0205.26004 [44] Salamon, S, Riemannian geometry and holonomy groups, Pitman research notes in mathematics, (1989), Longman Scientific & Technical Essex [45] Schwachhöfer, L.J, Connections with exotic holonomy, Trans. amer. math. soc., 345, 293-321, (1994) · Zbl 0821.53015 [46] Schwachhöfer, L.J, On homogeneous connections with exotic holonomy, Geom. dedicate, 62, 193-208, (1996) · Zbl 0860.53015 [47] Schwachhöfer, L.J, On the classification of holonomy representations, (1998), Universität Leipzig · Zbl 0907.53018 [48] Simons, J, I-on transitivity of holonomy systems, Ann. math., 76, 213-234, (1962) · Zbl 0106.15201 [49] Steinsiek, M, Transformation groups on homogeneous-rational manifolds, Math. ann., 260, 423-435, (1982) · Zbl 0503.32017 [50] Vaisman, I, Lectures on the geometry of Poisson manifolds, Progress in mathematics, 118, (1994), Birkhäuser Verlag Basel [51] Yau, S.T, On the Ricci curvature of a compact Kähler mainfold and the complex Monge-Ampère equation, I, Comm. pure appl. math., 31, 339-411, (1978) · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.